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Thermal Effects on the Casimir Force in the 0.1–5 mm Range
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The vacuum stresses between a metal half-space and a metal sphere were recently measured at room
temperature, in the 0.6 6 mm range, with an estimated accuracy of 5%. In the interpretation it was
assumed that the accuracy was not good enough for observing any thermal effects. We claim that
thermal effects are important in this separation range and back up this claim with numerical calculations
of the Casimir force at zero temperature and at 300 K, based on tabulated optical data of gold, copper,
and aluminum. The effects of dissipation and temperature are investigated and we demonstrate the
importance of considering these two corrections together.

PACS numbers: 82.65.Dp, 68.10.Cr
When two objects are brought together the mutual
electric polarizations of the materials result in an attrac-
tive force. At short distances, this is the van der Waals
force; at large distances, retardation becomes important
and the result is the Casimir force. For idealized perfect
conductors there is no van der Waals region. Casimir al-
ready predicted the attraction between a pair of parallel,
closely spaced, perfect conductors a distance d apart in
1948 [1]. He found for zero temperature the interaction
energy (per unit area): F�d� � 2p2h̄c�720d3. Casimir
and Polder [2] predicted a similar attraction between an
atom and a metal half-space. Sukenik et al. [3] measured
the Casimir-Polder force between ground state sodium
atoms and gold mirrors. They treated the mirrors as
perfect conductors and found excellent agreement with
0 K theory. We recently investigated the retarded free
energy of attraction between atoms and thin metal films
[4]. In the case of hydrogen atoms separated 3 mm from
thin silver films, thermal corrections were found to be
less than 5% at 300 K. The good agreement with the
zero temperature result is in part due to cancellations
of different thermal corrections. Whereas the transverse
magnetic energy contribution increases with temperature,
the opposite is true for the transverse electric energy
contribution. Lamoreaux [5] performed the first high
accuracy measurement of the Casimir force between
macroscopic objects. The measured force in the
0.6 6 mm separation range between a gold-coated
half-space and a gold-coated sphere was found to be in
good agreement with theoretical zero temperature results.
The estimated level of accuracy in this experiment was
5%. Measurements with even higher level of accuracy
have since been performed [6,7]. At the smallest separa-
tions �0.1 mm� a 1% level of accuracy has been claimed.
These high precision measurements are very important
for the verification of the theoretically predicted Casimir
force. These experiments can also be used to produce
constraints for hypothetical interactions predicted by
unified gauge theories [8]. In the interpretation of the ex-
perimental results, discussed above, thermal corrections
have been assumed small. There are several corrections
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to the ideal zero temperature Casimir force, e.g., finite
temperature, finite conductivity, surface roughness, and
curvature. Traditionally the different corrections to the
Casimir force have been treated separately. Recently
Klimchitskaya et al. [9] investigated surface roughness
and conductivity corrections and found that they have to
be considered together. In the experimental setups the
force between a sphere and a half-space was measured.
According to the proximity force theorem [10] this force
can be approximated with 2pR 3 F�d�, where R is the
radius of the sphere, d is the closest separation, and F
is the interaction energy (per unit area) between two
half-spaces separated a distance d. This expression is
a valid approximation if R is much larger than d. In
this paper we intend to show that the finite conductivity
has to be accounted for in order to find the correct
temperature-dependent Casimir force. The inclusion of
dissipation in the dielectric function of the metal will
strongly influence the transverse electric part of the at-
traction. In particular when dissipation is accounted for
this part of the interaction decreases with temperature,
in contrast to the increase of the part of the interaction
that originates from the transverse magnetic modes. The
temperature dependence of real and ideal metals is very
different. We will compare our theoretical results with
the experimental result of Lamoreaux. The result will
be discussed but clear-cut conclusions cannot be drawn
from these data. We argue that further theoretical and
experimental investigations of the temperature-dependent
Casimir force are of great importance. We will also
consider thermal effects on aluminum surfaces in the
0.1 2 mm separation range. We intend to show that
thermal corrections already become important in this
separation range. Since high accuracy measurements
have been performed in agreement with zero temperature
results at these separations, there is a disagreement be-
tween theory and experiment that needs to be resolved.

Lifshitz and co-workers [11,12] obtained an expression
for the van der Waals force between two half-spaces that
involved integration along the real frequency axis. By
using analytical continuation, the integration path was
© 2000 The American Physical Society 4757
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shifted to the imaginary frequency axis. Since the inte-
grand has an infinite number of poles on the imaginary
frequency axis, at vn � 2pkBTn�h̄, the final result
involves a summation over discrete frequencies. The free
energy between two half-spaces, which can be obtained
by an integration of the force, can, after a simple variable
substitution, be rewritten in the following way:
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where the indices 0 and 1 represent the medium between
the half-spaces and the half-spaces themselves, respec-
tively. The energy has contributions from both the trans-
verse electric (TE) and transverse magnetic (TM) modes.
The prime on the frequency summation indicates that the
n � 0 contribution should be multiplied with 1�2. The
n � 0 part of the TE contribution should be considered
with some care:
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For a perfect conductor the dielectric function should
approach infinity before the frequency is allowed to go to
zero. In this way Schwinger et al. [13] found a contribu-
tion from this part to the large separation asymptote. For
a real metal the dielectric function at small momenta and
low frequencies can be modeled with the simple Drude
expression:

e�iv� � 1 1 v2
p��v�v 1 h�� , (6)

where the presence of h is the result of dissipation. It
is related to the finite conductivity of a metal and cannot
be neglected. A real metal does not obtain any contribu-
tion from the n � 0 part of the TE modes since the di-
electric function approaches infinity too slowly as v goes
to zero. Although this work presents calculations per-
formed on the imaginary frequency axis, we would like
to mention that we have also performed calculations on
the real frequency axis. As expected the total result is
the same regardless of the integration path. In the real
frequency integration, thermal energy corrections origi-
nating from above and below the light line v � cq may
have different signs. The interaction between perfectly re-
flecting surfaces, which only receive contributions from
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above the light line, always increases with temperature. A
real metal with dissipation also receives contributions from
below the light line. The part of the free energy that origi-
nates from TE modes is interesting. We have found that the
ratio between this quantity evaluated at 300 and 0 K to a
good approximation decreases linearly with separation up
to roughly 1 mm. For gold surfaces it is roughly �0.9838 2

0.4337 3 d�mm��. Beyond 1 mm it decreases slower to-
wards zero; there are also minor deviations from the linear
decrease at the shortest separations. Thus, the common
use of finite temperature results obtained from perfect con-
ductors as comparison with experiment [5,6] is obviously
not meaningful.

The imaginary part of the dielectric functions, e2, is ob-
tained from tabulated optical data and the dielectric func-
tion on the imaginary axis, e�iv�, is obtained with the
use of a Kramers-Kronig relation. For general separations
one needs the full momentum dependence of the dielectric
functions, which cannot be deduced from the optical data.
For large separations only the small momentum range con-
tributes, and in the separation range of interest here we do
not need the momentum dependence. Lamoreaux [14] re-
cently used optical data to calculate the zero temperature
Casimir force between real metal half-spaces. A few errors
have been pointed out [15,16] in the way interpolations and
extrapolations were performed in Ref. [14]. The dielec-
tric properties of copper, gold, and aluminum were taken
from Ref. [17]. At high energies there are enough values
available as input to the calculation of the dielectric re-
sponse at imaginary frequencies but for small energies one
has to resort to extrapolations. Lamoreaux used the optical
data from Ref. [17] and came to the conclusion that one
could use the asymptotic 1�v dependence of the imaginary
part of the polarizability to extrapolate from the lowest ex-
perimental value. We find that this simple extrapolation
is not valid for the metals that we are considering. The
lowest energy data is not on the low energy asymptote.
We use a slightly different extrapolation scheme in the low
frequency range:

e2�v� �
4p

v

r

r2 1 �4pv�h2�2 . (7)

This part of the dielectric function describes intraband tran-
sitions. It has a low frequency asymptote of the form
1�v and a high frequency asymptote of the form 1�v3.
With h � vp this is the Drude expression with dissipa-
tion, which in the low energy limit gives the correct static
resistivity � r�. We use it in a slightly modified form and
let h be an adjustable parameter chosen in such a way that
we not only get the correct low energy limit but also pro-
duce good agreement with experimental data in an overlap
region. The experimental static resistivities [18] of gold,
copper, and aluminum are 2.611 3 10218, 1.855 3 10218,
and 2.944 3 10218 s, respectively. The corresponding
values of h are chosen to be 1.245 3 1016, 2.025 3 1016,
and 1.732 3 1016 s21, respectively. We will refer to these
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dielectric functions as Au1, Cu1, and Al1. For copper, ad-
ditional data from Ref. [19] reach into the region in which
the imaginary part follows the 1�v asymptote. The transi-
tion region can be described well if we chose a resistivity of
1.053 3 10217 s, and h is chosen to be 1.432 3 1016 s21.
We refer to the function using this extrapolation as Cu2.
The energy correction factor is defined as the ratio of the
interaction energy of the metals at finite temperature to
the corresponding energy of perfect conductors, at 0 K.
The energy correction factor at 0 K and 0.5 mm for the
models Au1, Cu1, Cu2, and Al1 are 0.83, 0.84, 0.82, and
0.87, respectively; at 300 K they are 0.74 for gold and
copper and 0.79 for aluminum. Lambrecht and Reynaud
[16] evaluated these quantities at zero temperature using a
slightly different extrapolation procedure. For gold, cop-
per, and aluminum they found the energy ratios 0.85, 0.85,
and 0.88. If optical data from different samples are used
the differences become even larger.

Lamoreaux [5] measured the force between a sphere and
a half-space. The major contribution to this force was an
electric force that vanished as 1�d. The data were fitted
to the best 1�d dependence and that part of the interaction
was subtracted off. In this way the coefficients a and b

were determined for a force law in Ref. [5], F�r� � a�rb ,
with an estimated accuracy of 5%. This force law agreed
rather well with the 0 K Casimir force between gold sur-
faces. Each data point, on the other hand, does not have an
accuracy of 5%. When Lamoreaux kindly supplied us with
the experimental data points he stressed that one should be
careful to conclude anything from individual data points.
We still consider it useful to compare these data points
with theoretical calculations. The energy correction fac-
tor for gold surfaces will be investigated. In Fig. 1 the
measured energy ratio is compared with four calculated
energy ratios: the energy between Au surfaces evaluated
at 0, 300, and 300 K with the static transverse electric part
incorrectly treated as in the perfect conductor case, and fi-
nally the energy between perfect conductors evaluated at
300 K. The result would be more or less unchanged were
the gold surfaces replaced with copper surfaces. The ex-
perimental data points between 0.63 1.26 mm agree very
well with the result for gold surfaces at 300 K when the
static transverse electric part is treated as in the perfect
conductor case. This theoretical treatment roughly corre-
sponds to totally neglecting any effects of dissipation on
the dielectric function in the low frequency limit. In this
separation range the relative difference between this theo-
retical and the experimental results is between 1% and 6%.
The correct treatment gives a corresponding difference
exceeding 17%. The experimental data points at 1.74 and
2.46 mm, on the other hand, agree better with the correct
result for gold surfaces at 300 K. One should remember
to be careful in the interpretation of the experimental data
points. The data points at larger separations become less
sensitive to material and surface properties. However, the
highest accuracy is found in the lower part of the measuring
FIG. 1. The energy correction factor for Au at 0 K (dotted
line), Au at 300 K (solid line), Au at 300 K with the static trans-
verse electric part incorrectly treated as in the perfect conductor
case (circles), and finally the energy between perfect conductors
evaluated at 300 K (dashed line). We have, as a comparison,
also plotted the experimental energy of Ref. [5] (squares).

range. Further experimental and theoretical investigations
are required to determine the correct temperature depen-
dence of the Casimir force between imperfect conductors.

In Fig. 2 we investigate the energy correction ratio be-
tween aluminum surfaces in the 0.1 2 mm range. The
choice of material and separation range is related to the ex-
periment of Mohideen and Roy [6]. Besides our numerical
results for Al at 0, 300, and 300 K, with the static trans-
verse electric part incorrectly treated as in the perfect con-
ductor case, we show the thermal correction, conductivity
correction, and the combination of these two corrections
as presented in Eqs. (2) and (4) of Ref. [6]. The thermal

FIG. 2. The energy correction factor for Al at 0 K (dotted line),
Al at 300 K (solid line) and Al at 300 K with the static transverse
electric part incorrectly treated as in the perfect conductor case
(dashed line). We have further added the corrections used in
Ref. [6]. These corrections are the thermal correction (circles),
the conductivity correction (squares), and a combination of these
two corrections (triangles).
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correction is based on a series expansion valid for perfect
conductors not too far apart. The combination of the two
corrections agrees nicely with the result when the n � 0
part of the interaction is treated as in the perfect conduc-
tor case. At 0.1 mm there is 13% deviation, otherwise the
difference is less than 2%. The effect of surface roughness
has been argued to be substantial in this case. Since we do
not take this or the semitransparent Au-Pd layers on top of
the Al surfaces into account we cannot say anything con-
clusive about the agreement with experiment. However,
according to our numerical calculations thermal effects al-
ready become important at these separations. Measure-
ments with the same level of accuracy as in Ref. [6], but
between much smoother aluminum surfaces, have recently
been reported [7]. Unfortunately, the data points presented
in Fig. 4 of Ref. [7] appear to be insufficiently accurate
for observing any thermal effects. At 0.1 mm, where a
1% level of accuracy has been claimed, thermal effects are
very small. At larger separations �0.2 0.5 mm� the spread
in experimental data points appears to exceed the thermal
corrections. It is therefore unlikely that this experimen-
tal result can be used to investigate thermal effects on the
Casimir force.

Since the early work of Mehra [20], thermal effects on
the Casimir force between plates of perfect conductors are
known to be substantial in the separation range of inter-
est. In this paper we have stressed the importance of
considering corrections to the Casimir attraction due to
finite temperature and finite conductivity together. The
Casimir interaction between perfect conductors always in-
creases with temperature. Our main result is the insight
that the temperature dependence of the attraction between
real metal surfaces can only be found if the finite conduc-
tivity is accounted for. The low temperature limit, when
dissipation is accounted for, is quite different than previ-
ously reported. At intermediate separations the attraction
decreases with increasing temperature. The high tempera-
ture limit for the interaction between dielectric surfaces
given by Lifshitz (Eq. [5.5] of Ref. [11]) is valid also for
metals. The discrepancy between the Lifshitz theory and
experiment demonstrated in this paper deserves further in-
vestigation. At the small separation end of the experi-
mental range, where the experimental accuracy is best, the
deviations are clearly visible. The cluster of data points
around 1 mm are close to the results for both the perfect
metal at room temperature and the real metal at zero tem-
perature. This is clearly against the theoretical prediction.
On the other hand in this end of the measuring range, ef-
fects of surface roughness on the experimental results and
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effects of theoretical idealizations, such as a perfectly sharp
metal-vacuum interface, are most important. At the large
separation end of the experimental range, experiments and
theory seem to agree, but here the experimental accuracy
is poorer and the agreement therefore not conclusive. We
hope that the discrepancy between theory and experiments
will be resolved in the near future.
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