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Topology of the Fittest Transportation Network
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The presence or absence of loops in the emergent transportation networks, that are characterized
by a minimum overall cost, is shown to depend on the convexity of the cost function for the local
transportation of material. Our results are directly applicable to a variety of situations across disciplines.
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Transportation networks are all around us and play a vi-
tal role in virtually all aspects of everyday life [1,2]. Ex-
amples of such networks include circuits [3] that transport
electric charge, mammalian circulatory systems that con-
vey nutrients to the body through blood circulation [4],
and channel networks associated with river drainage basins
[5]. In networks of resistances, typically, the flow pattern
is one in which a nonzero current flows through each re-
sistor (and loops are present). The flow patterns in the
circulatory system and the channel networks, in contrast,
normally correspond to spanning trees, which are loop-
less. Here, we prove generally that the shape (convexity
or concavity) of the cost function for local transportation
of material impacts directly on the topology (the presence
or absence of loops) of the emergent networks that mini-
mize the total cost of transportation. Our results suggest an
explanation for the observed topologies in the previously
mentioned situations, the directed Abelian sandpile model
[6] of self-organized criticality [7], a model of force fluc-
tuations in granular bead packs [8], and are also related to
save-wire Steiner trees [9,10] and minimum cost network
flows [11].

Consider a transportation network connecting a set of
locations (sites) to an outlet site denoted by O. Each
of the sites is connected to one or more of its nearby
locations (or neighbors), which results in a network
that spans the system. Such a network may be a well-
connected one with loops or merely a spanning tree.
At the local level, let the cost function for transporting
a quantity of material ib along a link b be denoted by
Cb�ib� with Cb�0� � 0. In the simplest scenario, that is
characteristic of many of the physical examples detailed
below, Cb is an increasing algebraic function of ib ,

Cb � kbjibj
g , (1)

where kb is a possibly link-dependent positive amplitude.
(In the electrical circuit case, Cb is the power dissipated
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when a current ib flows through a resistor kb with the ex-
ponent g equal to 2.) More generally, our results for the
topology of the network hold even when Cb is a function
that is concave upwards or convex corresponding to situ-
ations with g . 1 and g , 1, respectively. Note that
in the concave case the incremental cost for transporting
an additional amount of material increases as the amount
of material increases, whereas the reverse is true for the
convex case. For the linear cost function with g � 1,
the incremental cost is constant. Our focus is on study-
ing the emergent topological properties of the networks
that minimize the total cost of transportation. We prove
that when g . 1 it is most efficient to use all possi-
ble transportation pathways and loops emerge, whereas
when g , 1, it is more economical to send all the ma-
terial from a given site to one neighboring site rather than
to multiple neighboring sites, which leads, globally, to a
network with a tree topology.

Let a nonzero “current” (this could represent a water cur-
rent, an electrical current, or the number of people per unit
time that need to be transported to O from the location X)
IX be injected into the network at each site X. The injected
current flows through the network and is extracted at O.
The network spans the system because of the requirement
that a route ought to exist from any site X to the outlet O.
Let the scalar quantity jibj represent the magnitude of the
current on the bth link. The flow into the outlet has a rate
that exactly equals the sum of all the injected currents (the
IX’s). At a junction of the links, a conservation law for
the net flow holds—the outflow must exactly balance the
inflow plus the amount injected at the site. These conser-
vation laws at all junctions do not uniquely determine the
flow on each link for an arbitrary network. The number
of degrees of freedom in the choice of the flow pattern is
controlled by the number of independent loops.

The total transportation cost in the network per unit time
is given by

E �
X
b

kbjibj
g . (2)
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Here, we study the current flow pattern for arbitrary
non-negative values of g with the requirements that the
conservation law holds and E be minimized. (When g

is negative, the incremental cost for sending additional
material along a link becomes negative with the result
that the energy is minimized by having a proliferation of
loops with virtually infinite material being transported
in a circle. If one excludes loops in the network, the
preferred topology is that of a spiral network because the
aggregation of the material is maximized.) We find that,
for g . 1, there is a unique flow pattern that is chosen
with nonzero currents along all the links [3,12]. For
0 , g , 1, there are multiple solutions, each of which
has the topology of a spanning tree (loops are excluded).
The g � 1 case is rich. For the case, when g approaches
1 from above, all directed flow patterns are solutions,
whereas for the complementary case of g approaching 1
from below, all directed spanning trees form degenerate
solutions [13].

Proof.—We focus first on the cost function of (2) and
give a detailed proof of the results in this case. We will
analyze how the results extend to more general cost func-
tions later.

The distance, LX , between the outlet and any given site
X is defined to be the minimum number of sites encoun-
tered among all the routes along the network from O to X.
As a consequence, two neighboring sites X and Y satisfy
the constraint that jLX 2 LY j � 0 or 1. We now define
a convention for the orientation of each of the links. The
link between sites X and Y is defined to have an orienta-
tion that is directed toward the outlet. For cases in which
LX � LY , the orientation is chosen to be one of the two
possibilities. A directed flow pattern is, then, defined to
be one in which ib is zero on all links that are not directed
towards the outlet.

Given an arbitrary graph, the number, l, of independent
loops is given by

l � #�bonds� 2 #�sites� 1 #�connected components� .

(3)

Because our graphs are spanning structures, the number of
connected components equals 1.

We will first show that each spanning tree is a local
minimum of (2) for 0 , g , 1 and that there are no other
minima. The proof is straightforward if one chooses a
spanning tree and adopts the independent variables to be
the currents flowing in the bonds absent in that tree. The
number of bonds absent in a tree spanning a graph is equal
to the number of loops in that graph and given by Eq. (3).
Consider a general structure with l independent loops. In
order to be able to differentiate the energy (2) with respect
to the current safely, we introduce the regularized form

E´ �
X
b

kb�i2
b 1 ´2�g�2. (4)
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We will show that this energy has a local minimum in each
of the treelike spanning configurations (a tree is henceforth
denoted by the symbol T ) with currents ib � ´22g in all
b ” T . If we overlap T to the fully connected structure,
one may assign loop currents x1, x2, . . . , xl to the bonds
b ” T . All other currents are determined by the conser-
vation law at each site in terms of �x. Thus E´ � E´� �x�.
We will prove that ≠E´�≠xi � 0 at xi � ´22g and that the
Hessian is positive definite. Indeed

≠E´

≠xi
� g

X
b

kb
ib

�i2
b 1 ´2�12g�2

≠ib

≠xi
, (5)

where ib is linear in xi and ≠ib

≠xi
takes on one of the three

values 0, 11, or 21. In the sum (5) the only link not
belonging to the tree T that gives a nonzero contribution
is the one for which ib � xi . The only other terms that
could contribute are the links of the tree through which
nonzero currents flow. To deduce one class of minima (we
will later on show that this is the only class), we postulate
that each of the xi is infinitesimal and demonstrate this is
a consistent solution. Setting ≠E´

≠xi
equal to 0 leads to

xi � 2´22g
X

0

b

kb

ki
jibj

g21sgn�ib�
≠ib

≠xi
� ´22g ,

´ � 0 , (6)

and the sum
P0 is over all the links of the tree T . The

second derivative

Hij �
≠2E´

≠xi≠xj
� g

X
0

b

kb
�g 2 1�i2

b 1 ´2

�i2
b 1 ´2�22g�2

≠ib

≠xi

≠ib

≠xj
,

i fi j . (7)

Thus, each of the ≠2E´

≠xi≠xj
is nonzero in the ´ ! 0 limit.

When i � j

Hii �
≠2E´

≠xi≠xi
� gki´

g22 1 less singular terms,

(8)

and thus H has the form

H � g´g22K�I 1 ´22gT � , (9)

where I is the identity matrix, Kij � kidij, Tii � 0, and
Tij �

1
gki

Hij , i fi j. This implies that the eigenvalues of
H for sufficiently low ´ are all positive, confirming that
(6) is indeed a minimum.

Furthermore, one can see that closing one or more loops
with nonzero [O �´0�] currents (taking one or more of the
xi to be nonzero) causes the appearance of at least one
negative eigenvalue in the Hessian matrix for each added
bond. If xi is the current in this added bond, then the first
derivative is (on setting ´ � 0)

≠E´

≠xi
� gkijxij

g21sgn�xi� 1 g

0X
b

kbjibj
g21 ≠ib

≠xi
sgn�ib�

(10)
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and the second derivative is

≠2E´

≠x2
i

� g�g 2 1�

"
kijxij

g22 1

0X
b

kbjibj
g22 ≠i2

b

≠xi

#
, 0 .

(11)

Hii , 0 implies that
P

kj Hkjzkzj , 0 if zi fi 0 and zk �
0, k fi i. This shows that in this case the quadratic form
Hij is not positive definite and no local minima can be
found when there are loops with nonzero currents. This
completes the proof for the case 0 , g , 1.

The situation is quite different in the case g . 1: first
of all one can easily see that loopless structures cannot
be the minima any more. In fact, setting ≠E´

≠xi
equal to

0 [where ≠E´

≠xi
is given by Eq. (5)], and assuming the set

of independent currents to be of order ea , leads to an
inconsistency for any a . 0. Therefore, there must be
loops. Moreover, it is possible to show that there exists just
one minimum. The uniqueness of the minimum for g . 1
can be proved using a convexity argument: fix a spanning
tree T and, as before, take the currents ib on the bonds
b ” T to be the independent variables. Let jb , b [ T
be the other currents, determined by continuity. Now, let
�i�1�

b � and �i�2�
b � be two sets of values for the independent

currents �ib�. It is easy to see that E is a convex function,
namely, that for any a [ �0, 1�,

aE��i�1�
b �� 1 �1 2 a�E��i�2�

b �� . E��ai
�1�
b 1 �1 2 a�i�2�

b �� .

(12)

Noting that

E��ib�� �
X
b”T

kbjibj
g 1

X
b[T

kbj jbj
g , (13)

the convexity of E follows from the convexity of the func-
tion jxjg (the inequality holds term by term) and the fact
that, because the � jb�’s are linear in the �ib�’s,

jb��ai
�1�
b 1 �1 2 a�i�2�

b �� � ajb��i�1�
b �� 1 �1 2 a�jb��i�2�

b �� .

(14)

The strict convexity property (12) implies the uniqueness
of the minimum. In fact, if two minima were present, then,
along any path connecting the two, there must be at least
one point in which the inequality (12) fails. This completes
the proof.

Our analysis applies to much more general forms of the
cost function. Let us write in general E as a sum of the
contributions of the single bonds: E �

P
b F�ib�, where

we assume that the contribution F�ib� of bond b to the
cost function is an increasing function of the current in
that bond, and that F�0� � 0.

Let us consider first the 0 , g , 1 case. In order to
retain the result that spanning trees are minima of the cost
function it is sufficient to require that F�x� behaves as jxjg
with 0 , g , 1 when x ! 0. For a given spanning tree
T , let �xb� be the currents on the bonds b ” T . Because
the derivatives of F�xb� for b ” T become singular when
�xb� � �0�, the contribution of the currents in the other
bonds turns out to be irrelevant to the behavior of E in a
sufficiently small neighborhood of �xb� � �0�, where E
can be approximated by E �

P
b jibj

g , and thus has a
minimum. The result that the spanning trees are the only
minima does not hold for any F�x�: we need to further
assume that F�x� is a concave function (in order to have
E piecewise concave).

The proof outlined above for g . 1 generalizes trivially
to any convex function F�x�, because the convexity was the
only property of jxjg used in the proof.

Applications.—We now turn to physical applications of
these results and point out that several, quite distinct, situa-
tions can be described as optimization problems with a cost
function of the form of Eq. (2) and with network topolo-
gies in accord with our predictions. The g � 2 case cor-
responds to electrical networks. There is a unique optimal
current flow pattern, which contains loops. (Models with
general values of g have been considered previously in the
context of fractal nonlinear conductor networks [12,14].)
In the limit of g approaching 0 from above, one obtains
the problem of Steiner trees (for nonuniform values of kb)
[9,10], random spanning trees (for a constant kb) [15,16],
or equivalently [17] a zero-state Potts model [18] in statisti-
cal mechanics which can be used to determine the effective
resistance between two node points of a network of linear
resistors [17].

A wide spectrum of channel networks in the drainage
basins of rivers may be characterized by a value of g equal
to 1�2 [5]. This follows from the observation that the po-
tential energy lost as water tumbles down from one location
to a neighboring one is proportional to the amount of water
and the height difference between the locations. The latter
is known [5] on average, to scale with a negative power of
the height gradient with an exponent close to 1�2 in most
geologic settings (the slope-discharge law). In this case, as
predicted by our theorem, one merely has spanning trees
as the network of choice for the transportation of water.
This is in complete accord with the vast experimental data
on the drainage basins of rivers (see, for example, [5], and
references therein).

The g � 1 case is special in that it separates the two
classes of behaviors (networks with loops and trees). One
can prove [19] that, in this case, all directed networks are
optimal and degenerate. This situation describes network
flow problems [11] and the circulatory networks in mam-
mals (and plant vascular systems) based on the assumption
that the total amount of blood in circulation is as small as
possible within the constraint of providing nourishment to
all parts of the body and provides an explanation of quar-
ter power allometric scaling in living organisms [19]. It is
noteworthy that the appearance of loops has been associ-
ated with vascular network formation in tumor tissue [20].
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The g � 1 optimization problem reduces to a network
model that has been used to describe force fluctuations in
granular bead packs [8], which is based on the assumption
that all directed load networks are equally likely. The het-
erogeneous packing leads to a given grain being supported
unequally by other grains below it leading to a directed net-
work (with loops) of force fields. In this situation forces
that significantly exceeded the mean value are found but
are exponentially rare [8]. As g approaches 1 from below,
one obtains a host of equivalent situations. These include
the Scheidegger model for river networks [21], the random
agglomeration model [22,23], the Voter model [24], mod-
els of animal aggregation consistent with group size distri-
butions of tuna fish, sardinellas, and American buffaloes
[25], and the directed Abelian sandpile model of self-
organized criticality [6,7]. In this case, all directed span-
ning trees occur with equal probability. This has been
solved exactly for uniform kb in arbitrary dimensionality
[22,23]. A new universality class is obtained for the ran-
dom kb case [13]. In both situations, one obtains nontriv-
ial algebraic distributions for physically relevant quantities
[13,22,23].

It is important to underscore that while our theorem is
rather general, it does not apply to a range of other inter-
esting physical phenomena that involve networks. These
include branching patterns such as those found in dif-
fusion-limited aggregation, whose origin is a dynamic
mechanism of the screening of the growing tips, op-
timization problems in which the local cost function
convexity is not simply defined, and cases which need
to be generalized to include the location and number of
nodes themselves as optimization variables.
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