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Entangled State Quantum Cryptography: Eavesdropping on the Ekert Protocol
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Using polarization-entangled photons from spontaneous parametric down-conversion, we have imple-
mented Ekert’s quantum cryptography protocol. The near-perfect correlations of the photons allow the
sharing of a secret key between two parties. The presence of an eavesdropper is continually checked
by measuring Bell’s inequalities. We investigated several possible eavesdropper strategies, including
pseudo–quantum-nondemolition measurements. In all cases, the eavesdropper’s presence was readily
apparent. We discuss a procedure to increase her detectability.

PACS numbers: 03.67.Dd, 03.65.Bz, 42.79.Sz
The emerging field of quantum information science aims
to use the nonclassical features of quantum systems to
achieve performance in communications and computation
that is superior to that achievable with systems based solely
on classical physics. For example, current methods of
public-key cryptography base their security on the sup-
posed (but unproven) computational difficulty in solving
certain problems, e.g., finding the prime factors of large
numbers—these problems have not only been unproven to
be difficult, but have actually been shown to be computa-
tionally “easy” in the context of quantum computation [1].
In contrast, it is now generally accepted that techniques of
quantum cryptography can allow completely secure com-
munications between distant parties [2–5]. Specifically,
by using single photons to distribute a secret random cryp-
tographic key, one can ensure that no eavesdropping goes
unnoticed; more precisely, one can set rigid upper bounds
on the possible information known to a potential eaves-
dropper, based on measured error rates, and then use ap-
propriate methods of “privacy amplification” to reduce this
information to an acceptable level [6].

Since its discovery, quantum cryptography has been
demonstrated by a number of groups using weak coherent
states, both in fiber-based systems [7] and in free space ar-
rangements [8,9]. These experiments are provably secure
against all eavesdropping attacks based on presently avail-
able technology; however, there are certain conceivable at-
tacks to which they are might be vulnerable, as sometimes
the pulses used necessarily contain more than one pho-
ton—an eavesdropper could in principle use these events
to gain information about the key without introducing any
extra errors [10]. Use of true single-photon sources can
close this potential security loophole; and while the loop-
hole still exists when using pairs of photons as from para-
metric down-conversion (because occasionally there will
be double pairs), it has been shown that they may allow
secure transmissions over longer distances [11].

While a number of groups use correlated photon pairs
to study nonlocal correlations (via tests of Bell’s inequal-
ities [12–14]), and their possible application for quantum
cryptography [15,16], to our knowledge no results explic-
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itly using entangled photons in a quantum cryptographic
protocol have been reported in the literature [17]. It is
now well established that one cannot employ these non-
local correlations for superluminal signaling [18]. Never-
theless, Ekert showed that one can use the correlations to
establish a secret random key between two parties, as part
of a completely secure cryptography protocol [3].

In our version of the Ekert protocol, “Alice” and “Bob”
each receive one photon of a polarization-entangled pair
in the state jf1� � �jH1H2� 1 jV1V2���

p
2, where H (V )

represents horizontal (vertical) polarization. They each, re-
spectively, measure the polarization of their photons in the
bases �jH1� 1 eiajV1�� and �jH2� 1 eibjV2��, where a

and b randomly take on the values a1 � 45±, a2 � 90±,
a3 � 135±, a4 � 180±; b1 � 0±, b2 � 45±, b3 � 90±,
b4 � 135±. They then disclose by public discussion which
bases were used, but not the measurement results. For
the state jf1�, the probabilities for a coincidence between
Alice’s detector 1 (or detector 10, which detects the or-
thogonally polarized photons) and Bob’s detector 2 �20�
are given by

P12�a, b� � P1020�a, b� � �1 1 cos�a 1 b���4 ,

P120�a, b� � P102�a, b� � �1 2 cos�a 1 b���4 .
(1)

Note that when a 1 b � 180±, they will have completely
correlated results, which then constitute the quantum cryp-
tographic key. As indicated in Table I, the results from
other combinations are revealed and used in two indepen-
dent tests of Bell’s inequalities, to check the presence of
an intermediate eavesdropper (“Eve”). Here we present

TABLE I. Distribution of data dependent on Alice’s and Bob’s
respective phase settings ai and bi (see text for details).

Alice
a1 a2 a3 a4

b1 S · · · S QKey
b2 · · · S0 QKey S0

b3 S QKey S · · ·
Bob

b4 QKey S0 · · · S0
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FIG. 1. Schematic of quantum cryptography system. 351.1 nm
light from an Argon ion laser is used to pump two perpendicu-
larly oriented nonlinear optical crystals (BBO). The resultant en-
tangled photons are sent to Alice and Bob, who each analyze
them in one of four randomly chosen bases. The eavesdropper,
if present, was incorporated using either a polarizer or a de-
cohering birefringent plate [both orientable, and in some cases
with additional wave plates to allow analysis in arbitrary ellip-
tical polarization bases (Fig. 2a and 2b)].

an experimental realization of this protocol, and examine
various eavesdropping strategies.

We prepare the polarization-entangled state using the
process of spontaneous parametric down-conversion in
a nonlinear crystal [14]. In brief, two identically cut
adjacent crystals (beta-barium-borate, BBO) are oriented
with their optic axes in planes perpendicular to each other
(Fig. 1). A 45±-polarized pump photon is then equally
likely to convert in either crystal. Given the coherence
and high spatial overlap (for our 0.6 mm-thick crystals)
between these two processes, the photon pairs are then
created in the maximally entangled state jf1�. Alice’s
and Bob’s analysis systems each consist of a randomly
driven liquid crystal (LC) (to set the applied phase shift),
a half-wave plate (HWP) (with optic axis at 22.5±), and a
calcite Glan-Thompson prism (PBS). Photons from the
horizontal and vertical polarization outputs of each prism
are detected (after narrow-band interference filters) using
silicon avalanche photodiodes (EG&G SPCM-AQ’s,
efficiency �60%, dark count ,400 s21). The correlated
detector signals are synchronized and temporally dis-
criminated through AND gates. Because of the narrow
gate window (5 ns), the rate of accidental coincidences
(resulting from multiple pairs or background counts) is
only 1025 s21. From separate computers, Alice and Bob
control their respective LC’s with synchronously clocked
arbitrary waveform generator cards [19]. A coincident
event triggers a digitizer, which records the LC states, and
the outputs from each of the four detector pairs [20].

Because the total rate of coincidences between Alice’s
and Bob’s detectors was typically 5000 s21, the probabil-
ity of having at least one pair of photons during the col-
lection time window of 1 ms was 99%. Of course, there
was then also a high probability of more than one pair be-
ing detected within the window (96%). Because the phase
setting remains unchanged during a collection window,
muliple pairs could conceivably give extra information to a
potential eavesdropper. We avoided this problem by keep-
ing only the first event in any given window. Assuming
4734
that Alice and Bob each have completely isolated mea-
surement systems (i.e., there is no way for an eavesdrop-
per to learn about the measurement parameters a and b

by sending in extra photons of her own), this system is
secure even though no rapid switching is employed, since
only �1 photon pair event is used for any particular a-b
setting [21]. Given the 22 ms cycle period determined by
the liquid crystals [22], the maximum rate of data collec-
tion in our system is 45.4 Hz. The usable rate is slightly
less, because the LC voltages were occasionally in transi-
tion when the digitizer read them, yielding an ambiguous
determination of the actual phase setting. Typically, we
collected 40 useful pairs per second.

As seen in Table I, only 1�4 of the data actually con-
tribute to the raw cryptographic key; half the data are
used to test Bell’s inequalities; and 1�4 are not used at
all [23]. In four independent runs of �10 min each, we
obtained a total of 24 252 secret key bits (see Table II),
corresponding to a raw bit rate of 10.1 s21; the corre-
sponding bit error rate (BER) was 3.06 6 0.11% [24]. If
we attribute this BER (conservatively estimated as 3.4%)
entirely to an eavesdropper, we should assume she has
knowledge of up to 0.7% 1 �4�

p
�2� 3 3.4%� � 10.3%

��2500 bits� of the key, where the 0.7% comes from pos-
sible double-pair events [21], and the second term assumes
an intercept-resend strategy (see [8]). We must then per-
form sufficient privacy amplification to reduce this to an
acceptable level. After running an error detection pro-
cedure on our raw key material, 18 298 error-free bits
remained. Using appropriate privacy amplification tech-
niques [6], this was further compressed to 15 444 use-
ful secret bits (a net bit rate of 6.4 s21); the residual
information available to any potential eavesdropper is then
22�18 298215 44422500�� ln2, i.e., ø1 bit [8].

In contrast to nearly all tests of Bell’s inequalities previ-
ously reported, instead of using linear polarization analy-
ses (i.e., in the equatorial plane of the Poincaré sphere),
we used elliptical polarization analysis (i.e., on the plane
containing the circularly polarized poles of the sphere and
the 645± linearly polarized states). In particular, we mea-
sured the Bell parameters [25]:

S � 2E�a1, b1� 1 E�a1, b3�

1 E�a3, b1� 1 E�a3, b3� , (2)

S0 � E�a2, b2� 1 E�a2, b4� 1 E�a4, b2� 2 E�a4, b4� ,

where E�a, b� �
R12�a,b�1R1020 �a,b�2R120 �a,b�2R102�a,b�
R12�a,b�1R1020 �a,b�1R120 �a,b�1R102�a,b� ,

and the R’s are the various coincidence counts between

TABLE II. 100 bits of typical shared quantum key data for
Alice �A� and Bob �B�, generated using the Ekert protocol. Italic
entries indicate errors; our average BER was 3.06%.

A: 11111001010101101001100001010011100110111010100000
B: 11111001010101101001100001010011100100011010101000

A: 10001001010000101001111011101001001010101010010111
B: 11001001010000111001111011101001001011101010010111
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Alice’s and Bob’s detectors. For any local realistic
theory jSj, jS0j # 2, while for the combinations of a

and b indicated in Table I, the quantum mechanically
expected values of jSj, jS0j are 2

p
2. In a typical 10 min

run of our system, we observed S � 22.67 6 0.04
and S0 � 22.65 6 0.04; for the 40 min of collected
data, our combined values were S � 22.665 6 0.019,
S0 � 22.644 6 0.019, each a 34s violation of Bell’s
inequality. It is expected (and demonstrated experimen-
tally; see below) that the presence of an eavesdropper
will reduce the observed values of jSj, jS0j. In fact, if the
eavesdropper measures one photon from every pair, then
jSevej #

p
2 [3]. Because we observed high values of

jSj, jS0j, in our system the presence of an eavesdropper
could thus be detected in �1 s of data collection (the
time interval for which our jSj, jS0j exceed

p
2 by 2s).

Of course, one could similarly use the BER as a check
for a potential eavesdropper, who introduces a minimum
BER of 25% if she measures every photon; this requires
sacrificing some of the cryptographic key to accurately
determine the BER.

In investigating the effects of the presence of an eaves-
dropper there are two main difficulties. First, there are
various possible strategies; and second, we always assume
that Eve has essentially perfect equipment and procedures,
which of course is experimentally impossible to imple-
ment. Hence, we can at best simulate the effects she would
have; we did this for two particular intercept/resend eaves-
dropping strategies. In the first, we make a strong filtering
measurement of the polarization, in some basis x , and send
on the surviving photons to Bob. The simulated eavesdrop-
per thus makes the projective measurement jx� �xj. The
effect on the measured value of S and S0 and the BER de-
pend strongly on what eavesdropping basis jx� is used [8].
Theoretical predictions and results for bases in three or-
thogonal planes in the Poincaré sphere are shown in Fig. 2.

The second eavesdropping strategy examined was a
quantum nondemolition (QND) measurement [26]. QND
measurements of optical photon number and polarization
are presently impossible. In fact, precisely for this
reason current quantum cryptography implementations
are secure, even though they employ weak optical pulses
(with average photon number/pulse less than 1) [27].
Nevertheless, the ideal of quantum cryptography is that
it can be made secure against any physically possible
eavesdropping strategies; hence, it is desirable to test any
system against as many strategies as possible.

Although appropriate QND measurements cannot be
performed at present, it is well known that their effect
is to produce a random phase between the eigenstates
of the measurement, in turn due to the entanglement of
these states with the readout quantum system. We can
exactly simulate this effect by inserting, in Bob’s path, a
birefringent element that separates the extraordinary and
ordinary components of the photon wave packet by more
than the coherence length (�140 mm, determined by the
interference filters before the detectors); the result is a
FIG. 2. Data and theory showing the effect of an eavesdrop-
per on S and BER for various attack bases (as S0 closely agrees
with S, it is omitted for clarity). Diamonds represent strong
measurements, made with a polarizer; circles represent QND
attacks, simulated with a 3-mm-thick BBO crystal; error bars
are within the points. The attack bases are (a) jH� 1 eifjV �;
(b) cosujH� 1 sinujV �; and (c) j45±� 1 eic j 2 45±�; the ac-
tual measurement points in these bases are illustrated on the
inset Poincaré spheres. The measured average values with no
eavesdropper are indicated by unbroken grey lines, the broken
lines represent the maximum classical value of jSj.

completely random phase between these polarization com-
ponents, just as if a QND measurement had been made on
them. Mathematically, the effect of the eavesdropper is to
make a projective measurement jx� �xj 1 ei�j�jx�� �x�j,
where �j� represents a random phase. Note that the
theoretical predictions are identical with that for the strong
polarization measurement. The experimental data are also
shown in Fig. 2.

We see immediately that the optimal bases for eaves-
dropping lie in the same plane (on the Poincaré sphere)
as the bases employed by Alice and Bob—for this case,
the probability that the eavesdropper causes an error is
“only” 25% per intercepted bit, and the jSj value is

p
2

(Fig. 2a). On the other hand, if the eavesdropper does not
know the plane of the measurement bases, and uses, e.g.,
random measurements in an orthogonal plane, her aver-
age probability of producing an error climbs to 32.5%�bit,
and the average value of jSj drops to 1�

p
2. This sug-

gests a strategy for improved security: Alice and Bob
should choose bases corresponding to at least two (and
ideally three) orthogonal planes, thereby “magnifying” the
presence of an eavesdropper (at least one implementing
4735
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the sort of strong projective or QND-like measurement
strategies investigated here) above the usual 25%�bit er-
ror probability. Quantitative theoretical investigations of
such a strategy, known as the “six-state” protocol, support
these claims [28].

An eavesdropper could also examine only a fraction of
the photons, thus reducing her induced BER and increasing
the S value measured by Alice and Bob, at the expense of
her own knowledge of the cryptographic key. For example,
if she measures (in the optimal basis) less than 58.6% of the
photons, S . 2 and the corresponding BER , 15%, but
Eve’s knowledge of the key will be less than Bob’s (and
privacy amplification techniques will still permit genera-
tion of a secret key) [29,30].

In summary, we have implemented the Ekert quantum
cryptography protocol using entangled photon pairs. For
this proof-of-principle experiment, Alice and Bob were
situated side by side on the same optical table, obvi-
ously not the optimal configuration for useful cryptogra-
phy. Nevertheless, our system demonstrates the essential
features of the Ekert protocol, and moreover, we believe
it is the first to experimentally investigate the effect of a
physical intermediate eavesdropper [31]. We see no bar to
extending the transmission distance to hundreds of meters
[9] or even to earth-to-satellite distances [32].
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