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Quantum Cryptography with Entangled Photons
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By realizing a quantum cryptography system based on polarization entangled photon pairs we establish
highly secure keys, because a single photon source is approximated and the inherent randomness of
quantum measurements is exploited. We implement a novel key distribution scheme using Wigner’s
inequality to test the security of the quantum channel, and, alternatively, realize a variant of the BB84
protocol. Our system has two completely independent users separated by 360 m, and generates raw keys
at rates of 400–800 bits�s with bit error rates around 3%.

PACS numbers: 03.67.Dd, 42.79.Sz, 89.80.+h
The primary task of cryptography is to enable two par-
ties (commonly called Alice and Bob) to mask confidential
messages, such that the transmitted data are illegible to any
unauthorized third party (called Eve). Usually this is done
using shared secret keys. However, in principle it is always
possible to intercept classical key distribution unnoticedly.
The recent development of quantum key distribution [1]
can cover this major loophole of classical cryptography. It
allows Alice and Bob to establish two completely secure
keys by transmitting single quanta (qubits) along a quan-
tum channel. The underlying principle of quantum key dis-
tribution is that nature prohibits gaining information on the
state of a quantum system without disturbing it. Therefore,
in appropriately designed schemes, no tapping of the qubits
is possible without showing up to Alice and Bob. These
secure keys can be used in a one-time-pad protocol [2],
which makes the entire communication absolutely secure.

Two well-known concepts for quantum key distribution
are the BB84 scheme and the Ekert scheme. The BB84
scheme [1] uses single photons transmitted from Alice to
Bob, which are prepared at random in four partly orthog-
onal polarization states: 0±, 45±, 90±, and 135±. If Eve
tries to extract information about the polarization of the
photons she will inevitably introduce errors, which Alice
and Bob can detect by comparing a random subset of the
generated keys.

The Ekert scheme [3] is based on entangled pairs and
uses Bell’s inequality [4] to establish security. Both Al-
ice and Bob receive one particle out of an entangled pair.
They perform measurements along at least three different
directions on each side, where measurements along paral-
lel axes are used for key generation and oblique angles are
used for testing the inequality. In Ref. [3], Ekert pointed
out that eavesdropping inevitably affects the entanglement
between the two constituents of a pair and therefore re-
duces the degree of violation of Bell’s inequality. While
we are not aware of a general proof that the violation of a
Bell inequality implies the security of the system, this has
been shown [5] for the BB84 protocol adapted to entan-
gled pairs and the Clauser-Horne-Shimony-Holt (CHSH)
inequality [6].
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In any real cryptography system, the raw key generated
by Alice and Bob contains errors, which have to be cor-
rected by classical error correction [7] over a public chan-
nel. Furthermore, it has been shown that whenever Alice
and Bob share a sufficiently secure key, they can enhance
its security by privacy amplification techniques [8], which
allow them to distill a key of a desired security level.

A range of experiments have demonstrated the feasi-
bility of quantum key distribution, including realizations
using the polarization of photons [9] or the phase of pho-
tons in long interferometers [10]. These experiments have
a common problem: the sources of the photons are attenu-
ated laser pulses which have a nonvanishing probability to
contain two or more photons, leaving such systems prone
to the so-called beam splitter attack [11].

Using photon pairs as produced by parametric down-
conversion allows us to approximate a conditional single
photon source [12] with a high bit rate [13], and yet a very
low probability for generating two pairs simultaneously.
Moreover, when utilizing entangled photon pairs one im-
mediately profits from the inherent randomness of quantum
mechanical observations leading to purely random keys.

Various experiments with entangled photon pairs have
already demonstrated that entanglement can be preserved
over distances as large as 10 km [14], yet none of these
experiments was a full quantum cryptography system. We
present in this paper a complete implementation of quan-
tum cryptography with two users, separated and inde-
pendent of each other in terms of Einstein locality and
exploiting the features of entangled photon pairs for gen-
erating highly secure keys.

In the following, we will describe the variants of the
Ekert scheme and of the BB84 scheme, both of which
we implemented in our experiment, based on polarization
entangled photon pairs in the singlet state

jC2� �
1
p

2
�jH�AjV �B 2 jV �AjH�B� , (1)

where photon A is sent to Alice and photon B is sent
to Bob, and H and V denote the horizontal and vertical
linear polarization, respectively. This state shows perfect
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anticorrelation for polarization measurements along par-
allel but arbitrary axes. However, the actual outcome of
an individual measurement on each photon is inherently
random. These perfect anticorrelations can be used for
generating the keys, yet the security of the quantum chan-
nel remains to be ascertained by implementing a suitable
procedure.

Our first scheme utilizes Wigner’s inequality [15]
for establishing the security of the quantum channel,
in analogy to the Ekert scheme which uses the CHSH
inequality. Here Alice chooses between two polarization
measurements along the axes x and c , with the possible
results 11 and 21, on photon A and Bob between
measurements along c and v on photon B. Polarization
parallel to the analyzer axis corresponds to a 11 result,
and polarization orthogonal to the analyzer axis corre-
sponds to 21.
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Assuming that the photons carry preassigned values de-
termining the outcomes of the measurements x , c , v and
also assuming perfect anticorrelations for measurements
along parallel axes, it follows that the probabilities for ob-
taining 11 on both sides, p11, must obey Wigner’s in-
equality:

p11�x , c� 1 p11�c , v� 2 p11�x , v� $ 0 . (2)

The quantum mechanical prediction p
qm
11 for these

probabilities at arbitrary analyzer settings a (Alice) and
b (Bob) measuring the C2 state is

p
qm
11�a, b� �

1
2

sin2�a 2 b� . (3)

The analyzer settings x � 230±, c � 0±, and v �
30± lead to a maximum violation of Wigner’s inequal-
ity (2):
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As Wigner’s inequality is derived assuming perfect anti-
correlations, which are only approximately realized in any
practical situation, one should be cautious in applying it to
test the security of a cryptography scheme. When the devi-
ation from perfect anticorrelations is substantial, Wigner’s
inequality has to be replaced by an adapted version [16].

In order to implement quantum key distribution, Alice
and Bob each vary their analyzers randomly between two
settings, Alice: 230±, 0± and Bob: 0±, 30± (Fig. 1a). Be-
cause Alice and Bob operate independently, four possi-
ble combinations of analyzer settings will occur, of which
the three oblique settings allow a test of Wigner’s in-
equality and the remaining combination of parallel settings
(Alice � 0± and Bob � 0±) allows the generation of keys
via the perfect anticorrelations, where either Alice or Bob
has to invert all bits of the key to obtain identical keys.

If the measured probabilities violate Wigner’s inequal-
ity, then the security of the quantum channel is ascertained,
and the generated keys can readily be used. This scheme
is an improvement on the Ekert scheme which uses the
CHSH inequality and requires three settings of Alice’s and
Bob’s analyzers for testing the inequality and generating
the keys. From the resulting nine combinations of settings,
four are taken for testing the inequality, two are used for
building the keys, and three are omitted completely. How-
ever, in our scheme each user needs only two analyzer set-
tings and the detected photons are used more efficiently,
thus allowing a significantly simplified experimental im-
plementation of the quantum key distribution.

As a second quantum cryptography scheme we imple-
mented a variant of the BB84 protocol with entangled pho-
tons, as proposed in Ref. [17]. In this case, Alice and Bob
randomly vary their analysis directions between 0± and 45±

(Fig. 1b). Alice and Bob observe perfect anticorrelations
of their measurements whenever they happen to have par-
allel oriented polarizers, leading to bitwise complementary
keys. Alice and Bob obtain identical keys if one of them
inverts all bits of the key. Polarization entangled photon
pairs offer a means to approximate a single photon situ-
ation. Whenever Alice makes a measurement on photon
A, photon B is projected into the orthogonal state which
is then analyzed by Bob, or vice versa. After collecting
the keys, Alice and Bob authenticate their keys by openly
comparing a small subset of their keys and evaluating the
bit error rate.

The experimental realization of our quantum key dis-
tribution system is sketched in Fig. 2. Type-II parametric
down-conversion in b-barium borate (BBO) [18], pumped
with an argon-ion laser working at a wavelength of 351 nm
and a power of 350 mW, leads to the production of polar-
ization entangled photon pairs at a wavelength of 702 nm.
The photons are each coupled into 500 m long optical
fibers and transmitted to Alice and Bob, respectively, who
are separated by 360 m.

Alice and Bob both have Wollaston polarizing beam
splitters as polarization analyzers. We will associate a
detection of parallel polarization (11) with the key bit 1

FIG. 1. Settings for Alice’s and Bob’s analyzers for realizing
quantum key distribution based either on (a) Wigner’s inequal-
ity or (b) the BB84 protocol. The angular coordinates are ref-
erenced to the propagation direction of the particle.
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FIG. 2. The polarization entangled photons are transmitted via
optical fibers to Alice and Bob, who are separated by 360 m,
and both photons are analyzed, detected, and registered inde-
pendently. After a measurement run the keys are established by
Alice and Bob through classical communication over a standard
computer network.

and orthogonal detection (21) with the key bit 0. Electro-
optic modulators in front of the analyzers rapidly switch
(rise time ,15 ns, minimum switching interval 100 ns) the
axis of the analyzer between two desired orientations, con-
trolled by quantum random signal generators [19]. These
quantum random signal generators are based on the quan-
tum mechanical process of splitting a beam of photons and
have a correlation time of less than 100 ns.

The photons are detected in silicon avalanche photo
diodes [20]. Time interval analyzers on local personal
computers register all detection events as time stamps to-
gether with the setting of the analyzers and the detection
result. A measurement run is initiated by a pulse from a
separate laser diode sent from the source to Alice and Bob
via a second optical fiber. Only after a measurement run is
completed, Alice and Bob compare their lists of detections
to extract the coincidences. In order to record the detec-
tion events very accurately, the time bases in Alice’s and
Bob’s time interval analyzers are controlled by two rubid-
ium oscillators. The stability of each time base is better
than 1 ns for 1 min. The maximal duration of a measure-
ment is limited by the amount of memory in the personal
computers (typically 1 min).

Overall our system has a measured total coincidence rate
of �1700 s21, and a singles rate of �35 000 s21. From
this, one can estimate the overall detection efficiency of
each photon path to be 5% and the pair production rate
to be 7 3 105 s21. Our system is very immune against a
beam splitter attack because the ratio of two-pair events is
only �3 3 1023, where a two-pair event is the emission
of two pairs within the coincidence window of 4 ns. The
coincidence window in our experiment is limited by the
time resolution of our detectors and electronics, but in
principle it could be reduced to the coherence time of the
photons, which is usually of the order of picoseconds.

In realizing the quantum key distribution based on
Wigner’s inequality, Alice’s analyzer switches randomly
with equal frequency between 230± and 0±, and Bob’s
analyzer between 0± and 30±. After a measurement, Alice
and Bob extract the coincidences for the combinations
of settings of �230±, 30±�, �230±, 0±� and �0±, 30±�, and
calculate each probability. For example, the probability
p11�0±, 30±� is calculated from the numbers of coincident
events C11, C12, C21, C2 measured for this combina-
tion of settings by

p11�0±, 30±� �
C11

C11 1 C12 1 C21 1 C2

. (5)

We observed in our experiment that the left-hand side of
inequality (2) evaluated to 20.112 6 0.014. This viola-
tion of (2) is in good agreement with the prediction of
quantum mechanics and ensures the security of the key
distribution. Hence the coincident detections obtained at
the parallel settings �0±, 0±�, which occur in a quarter of all
events, can be used as keys. In the experiment Alice and
Bob established 2162 bits raw keys at a rate of 420 bits�s
[21], and observed a quantum bit error rate of 3.4%.

In our realization of the BB84 scheme, Alice’s and
Bob’s analyzers both switch randomly between 0± and 45±.
After a measurement run, Alice and Bob extract the co-
incidences measured with parallel analyzers, �0±, 0±� and
�45±, 45±�, which occur in half of the cases, and generate
the raw keys. Alice and Bob collected �80 000 bits of key
at a rate of 850 bits�s, and observed a quantum bit error
rate of 2.5%, which ensures the security of the quantum
channel.

For correcting the remaining errors while maintaining
the secrecy of the key, various classical error correction and
privacy amplification schemes have been developed [7].
We implemented a simple error reduction scheme requiring
only little communication between Alice and Bob. Alice
and Bob arrange their keys in blocks of n bits and evaluate
the bit parity of the blocks (a single bit indicating an odd
or even number of ones in the block). The parities are
compared in public, and the blocks with agreeing parities
are kept after discarding one bit per block [22]. Since
parity checks reveal only odd occurrences of bit errors, a
fraction of errors remains. The optimal block length n
is determined by a compromise between key losses and
remaining bit errors. For a bit error rate p the probability
for k wrong bits in a block of n bits is given by the binomial
distribution Pn�k� � � n

k �pk�1 2 p�n2k .
Neglecting terms for three or more errors and account-

ing for the loss of one bit per agreeing parity, this algo-
rithm has an efficiency h�n� � �1 2 Pn�1�� �n 2 1��n,
defined as the ratio between the key sizes after parity
check and before. Finally, under the same approxima-
tion as above, the remaining bit error rate p0 is p0 �
�1 2 Pn�0� 2 Pn�1�� �2�n�. Our key has a bit error rate
p � 2.5%, for which h�n� is maximized at n � 8 with
h�8� � 0.7284, resulting in p0 � 0.40%. Hence, from
�80 000 bits of raw key with a quantum bit error rate of
2.5%, Alice and Bob use 10% of the key for checking
the security and the remaining 90% of the key to distill
49 984 bits of error corrected key with a bit error rate of
0.4%. Finally, Alice transmits a 43 200 bit large image
to Bob via the one-time-pad protocol, utilizing a bitwise
XOR combination of message and key data (Fig. 3).
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FIG. 3 (color). The 49984 bit large keys generated by the
BB84 scheme are used to securely transmit an image [23] (a)
of the “Venus von Willendorf” [24] effigy. Alice encrypts the
image via bitwise XOR operation with her key and transmits the
encrypted image (b) to Bob via the computer network. Bob de-
crypts the image with his key, resulting in (c) which shows only
a few errors due to the remaining bit errors in the keys.

In this Letter we presented the first full implementa-
tion of entangled state quantum cryptography. All the
equipment of the source and of Alice and Bob has proven
to operate outside shielded lab environments with a very
high reliability. While further practical and theoretical in-
vestigations are still necessary, we believe that this work
demonstrates that entanglement based cryptography can be
tomorrow’s technology.
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