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Simple Model of Intermittent Passive Scalar Turbulence
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The passive scalar convection by chaotic two-dimensional incompressible flow is studied. Analytically
solvable equations are suggested to describe the evolution of the probability density functions of tracer
gradients and power spectra. The parameters of the model are expressed explicitly via the correlation
functions of the velocity field. The multifractal spectrum f�a� of the scalar dissipation field is calculated;
strict multifractality holds only for small values of a. Stationary and exponentially decaying power
spectra of the scalar are obtained.

PACS numbers: 47.27.Ak, 05.40.–a, 47.10.+g, 47.53.+n
The problem of the turbulent advection of a passive
scalar f (e.g., a dye concentration, temperature, etc.) has
a long history and has been studied intensively due to its
great practical importance. During the past few decades,
the efforts have been concentrated on the analysis of
the intermittent structure of the tracer distribution [1–9].
Perhaps the most immediate evidence of the intermittency
is the multifractal structure of dissipation fields [1–4]; the
scalar dissipation is defined as kj=fj2, where k is the
molecular diffusivity. The Batchelor 1�k law for station-
ary tracer power spectra [5] and its exponential tail have
been also frequently disputed subjects [6–8]. The same
applies to the exponential decay of scalar fluctuations in
the absence of an external source of dye [7,9]. Theo-
retical studies have been mainly based on the Kraichnan
model [6] assuming velocity field to be delta corre-
lated in time. This model has led to several important
analytic results; however, the rigorous approach has still
been unable to relate the parameters characterizing the
above-mentioned phenomena directly to the correlation
functions of the velocity field. The main tool for the
multifractal analysis has been the generalized Baker
map model, which has been also used to calculate the
probability density function (PDF) of largest Lyapunov
exponents [2,3].

In this Letter we suggest a simple equation to describe
the PDF of tracer gradients, which is further used to calcu-
late the multifractal spectrum of the scalar dissipation field.
A similar equation is derived for the scalar power spec-
trum and used to study the long-time decay of the scalar;
the stationary power spectrum in the presence of a station-
ary tracer source is also obtained. The parameters of the
model are expressed directly via the correlation functions
of the velocity field. The results are in good agreement
with the earlier experimental, analytic, and numerical re-
sults. The method can be extended to cover more realistic
physical conditions. In addition to the straightforward ap-
plications (heat and pollutant transfer in ocean and atmo-
sphere, chemical mixing, etc.), it can be used to approach
the more complex problems of hydrodynamic turbulence
and magnetic dynamos.
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The equation of our interest is

≠f

≠t
1 y ? =f � k=2f 1 g , (1)

where g is a source of passive scalar. We consider a
two-dimensional (2D) problem with a chaotic isotropic
single-scale incompressible velocity field y�r, t� in the ab-
sence of Kolmogorov-Arnol’d-Moser surfaces. Thus, we
assume that the Fourier spectrum of the velocity field is
constrained into one octave of wavelengths of unit length.
These assumptions are mostly for the sake of simplicity;
the approach can also be extended to the three-dimensional
(3D) geometry and to the velocity fields with power spec-
tra and intermittent structure. We consider the large Peclet
number limit, k ø �jyj�, when the problem of finding the
PDF of passive scalar gradients and power spectra can be
reduced to the problem of finding the PDF of stretching
factors of fluid elements r�r , t� � exp�hmt� cosw. Here,
hm stands for the largest Lyapunov exponent, and w is the
angle between the respective eigenvector and a fluid ele-
ment. We consider the stretching factors and not the largest
Lyapunov exponents, because, in the absence of molecu-
lar diffusivity, they are directly equivalent to the passive
scalar gradients. Besides, they are easily tractable via the
study of a fluid line evolution; this idea has been used to
calculate the Kolmogorov entropy in the 2D quasistation-
ary flow [10].

First, we study the case when there is no source of
dye, and at the initial moment t � 0 there was a uniform
gradient of dye concentration,

g � 0, =fjt�0 � ex , (2)

where ex is the unit vector along the x axis. We assume that
dye has been convected long enough to create small-scale
structures, but not too long, so that the smallest created
scales are still longer than the dissipation scale

p
kt. We

obtain the PDF of tracer gradients and study the multifrac-
tal structure of the passive scalar dissipation. Further, we
consider the long-time decay of the tracer fluctuations �c2�
(assuming �c� � 0), under the same initial conditions. Fi-
nally, we analyze the steady-state power spectrum of the
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passive scalar field in the case of a statistically stationary
single-scale source of dye,

g � g�r, t� . (3)

The approach is based on a simple diffusion-convection
equation, which we suggest to describe the distribution of
fluid elements over the stretching factor r. We derive it
both for the Kraichnan model and for velocity fields of
finite correlation time. First, we consider the case of real
velocity fields of finite correlation time t, which is used
as the unit time, i.e., t � 1.

The relationship between the stretching of fluid ele-
ments and passive scalar gradients has been exploited in
many papers [4,7,11–14]. Following the idea of the pre-
vious studies, we notice that neglecting the molecular
diffusivity, at a fluid particle, the modulus of the dye
gradient evolves in the same way as the length of an
infinitesimal fluid element dr�t�, initially perpendicular
to the gradient [dr�0��=f�0�]: j=fj ~ jdr�t�j. Indeed,
the fluid parallelogram defined by the initially perpen-
dicular vectors dr�t� and dr��t� preserves its area dS �
jdr�t�j ? jdr��t�j sina, where a is the angle between the
vectors. On the other hand, at the fluid particle, the
dye concentration remains unchanged and jdr��t�j sina ~

j=fj21. Thus, with the proper choice of units and ne-
glecting the molecular diffusivity, the stretching factors
r � jdr�r0, t�j�jdr�r0, 0�j and dye gradients are equiva-
lent to each other. Although the formal equivalence holds
for the fluid elements, initially parallel to the isolines of
f�r, 0�, statistically the orientation given by isolines has
no preference over the other directions.

Let us define l�r, t�dr as the average total length of
those pieces of a fluid line, for which r [ � r, r 1 dr�
(the length is reduced to the initial length of the fluid line
L0). Then, the PDF of stretching factors and dye gradi-
ents is given by r21l� r�. We consider time increments
Dt � 1, and study the change of the state of fluid ele-
ments; we neglect the time correlation on time scales
longer than t � 1. Let p�q�dq denote the probability
of stretching a fluid element by a factor of q. Then we
can write l�r, t 1 1�dr �

R
p�q�l�r�q, t� d�r�q�q dq,

or, introducing s � lnr and l�s, t� � l�exps, t�,

l�s, t 1 1� �
Z

l�s 2 lnq, t�p�q� dq . (4)

The initial condition (2) can be rewritten as

l�s, 0� � d�s� . (5)

This system can be solved via Fourier transform l�f, t� �R
l�s, t� exp�2ifs� ds, leading to

l�f, t� � P�f�t ,

P�f� �
Z

p�expq� exp�q 2 ifq� dq . (6)
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Upon taking inverse Fourier transform, denoting h � s�t,
and applying the saddle-point method on the long-time
limit, expression (6) yields

l 	 �≠2F�t≠f2�21�2 exp
F�f0�h�, h�t� ,

where F�f, h� � ln�
R1`

2` p�expq� exp�q 1 fq� dq� 2 fh,
and f0�h� is the solution to the equation ≠F�≠f � 0. This
result has the same form as that obtained for the PDF of
largest Lyapunov exponents p�hm, t� via the generalized
Baker map model [3]. It should be noted that the functions
l�h� and p�hm, t� are in fact distinct, even asymptotically
at t ! `. This is caused by the presence of fluid elements,
almost perpendicular to the eigenvector of the largest
Lyapunov exponent. The function F�f0�h�, h� has an
additional advantage of being related directly to the
correlation properties of the velocity field. For a typical
localized correlation function p�q�, function F�f, h�
grows linearly at f ! 6`. Thus, f0�h� is defined only
for a finite range of the values of h, and outside of that
region, l � 0.

In what follows, we consider a simplified version of
Eq. (6), when P�f� � 2iuf 2 Df2, where u and D are
constants, and discrete increments are replaced by a time
derivative. Then, Eq. (4) can be rewritten as

≠l

≠t
1 u

≠l

≠s
� D

≠2l

≠s2 . (7)

Such a simplification will arise in two cases: (i) on long-
time limit, when the function l�s, t� has a smoothed pro-
file and we can neglect the higher terms in the expansion
of P�f� resulting in

u �
Z

p�k� lnk dk ,

D �
1
2

Z
p�k� �lnk�2 dk , (8)

(ii) for the Kraichnan model, when P � 2iuf 2 Df2,
with

ud�t 2 t0� �
1
4 ��yrt�t� 1 ytr�t�� �yrt�t0� 1 ytr�t0��� ,

Dd�t 2 t0� �
1
2 �yrr�t�yrr �t0�� , (9)

where indices r and t denote the components of the tensor
=y. This result can be obtained via the Fourier transform
of the expression l�s, t� � �d�s 2 ln jdr�t�j��, where
dr�t� � dr�0� exp�

Rt
0 =y dt0�, at the limit t ! 0. Here,

the correlation time is zero, and, hence, time is measured
in arbitrary units.

As discussed earlier, Eq. (7) describes the PDF of dye
gradient for k � 0. In order to handle the case of a
nonzero molecular diffusivity, we apply Eq. (7) to the evo-
lution of the quantity F � Ekk, where Ek is the tracer
power spectrum and k the modulus of the wave vector.
While the legitimacy of such an approach can be ques-
tioned for k 	 1, it is motivated for k ¿ 1. Indeed,
following the basic idea of Batchelor [5], for small wave-
lengths, the sinusoidal patterns are stretched by fluid al-
most homogeneously, and the wave vector is changed by



VOLUME 84, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 17 JANUARY 2000
the same factor as the local dye gradient. Meanwhile, the
amplitude of tracer density oscillations (and, hence, the
quantity Ekk) remains unchanged. The dissipation due to
the molecular diffusivity leads to the exponential decay
of sinusoidal fluctuations at the rate equal to k2k. The
respective decay rate of F is 2k2k. Upon substituting
k � exp�s̃�, we obtain

≠F

≠t
1 u

≠F

≠s̃
� D

≠2F

≠s̃2 2 2k exp�2s̃�F . (10)

This equation is our main tool to analyze the power spectra.
The remainder of the Letter is devoted to the analy-

sis of the consequences of Eqs. (7) and (10). First, we
proceed to the calculation of the multifractal spectrum
f�a� of the tracer dissipation field. Here we treat l�s, t�
as the PDF of dye gradients, s � ln j=fj, and consider
the initial conditions (5). In that case, Eq. (7) can be
directly solved:

l � �pDt�21�2 exp

∑
2

�s 2 ut�2

Dt

∏
. (11)

Further we use the obtained PDF to derive the multifractal
spectrum. To this end, we make use of the pattern formed
by fluid curves, which were originally straight lines,
separated by unit length, and perpendicular to the gradient
of the dye concentration. We shall study a cross section
of the dissipation field, and the dependence of the local
value of s on the coordinate j along the cross section.
First, we note that the characteristic fluctuation amplitude
of the dye concentration is 1. Indeed, when the fluid
lines evolve, they will be folded; typically, the density
variations of the order of unity are embraced between two
approaching each other pieces of the curve. Thus, on the
cross section, the characteristic scale of dye density varia-
tions is d 	 1�k 	 exp�2s�. The small-scale variations
of the function s�j� are described by the same scale.
However, the function s�j� exhibits long-range correla-
tions, as well, because two close to each other pieces of a
fluid curve are stretched in a similar way. It can be argued
that, in rescaled coordinates z �

Rj
j0 exp�s�j0 �� dj0,

function s�z � is a random Brownian function.
The overall scalar dissipation in a region �j, j 1

r�, r & 1, can be assessed as Wr �j� �
R

j1r
j kk2 dj 	

kk2
0rd0 � kk0r , where k0r is the maximal value of k over

the given region, and d0 � 1�k0r . In order to determine
the multifractal spectrum f�a�, we need to know the
probability,

p�r , a� ~ r12f�a�, (12)

that the normalized dissipation wr�j� � Wr �j��W1�j�
scales as ath power of r , i.e., wr [ �ra , 2ra�. Because
of the approximate equality Wr�j��W1�j� 	 k0r�k01, this
probability can be calculated as

p�r , a� �

Ω
L�r0�r , L�r0�r ø 1
exp�2L�r0�r�, L�r0�r ¿ 1

with r0 � k01ra . (13)
Here L�r0� �
R`

r0
l�r� dr is the overall length per unit

area of those parts of the fluid curves, which are stretched
more than a prefixed factor r0. Indeed, L� r0� is the es-
timate for the number, how many times a cross section of
unit length is intersected by the fluid curves of r . r0.
If the average number N � Lr of such intersections per
region of size r is very large (N ¿ 1), the probability that
there is only one intersection per region is exponentially
small, p 	 exp�2N�. At the opposite limit of N ø 1, it
can be assessed simply as N ; at the marginally applicable
limit of both expressions N 	 1, we have a rough estimate
of p 	 1. According to (11),

L �
1
2

exp

∑µ
u 1

D
4

∂
t

∏

3

∑
1 2 erf

s0 1 �u 1 D�2�t
p

Dt

∏
, (14)

where s0 � lnr0. At large values of s0, the asymp-
totics of Eq. (14) is given by L 	 exp�2�s0 1 ut�2�
Dt 2 s0� �1 1 2�s0 1 ut��Dt�21; substituting s0 �
2aj lnrj 1 lnk01 we obtain

p�r , a� 	 r12a�
p

114u�D2aj lnrj�Dt�. (15)

Here we have also substituted the value of k01, which has
been calculated by noting that p�1, a� 	 1.

In its strict sense, multifractality assumes that p�r , a� is
a power law of r; according to Eq. (15), this is valid for
small values of a, a ø Dt

p
1 1 4u�D�j ln�r0�j, where

r0 is the smallest considered space scale. Under this as-
sumption, expressions (12) and (15) yield

f�a� � a
p

1 1 4u�D ; (16)

remember that this expression assumes Lr ø 1, and,
hence, f�a� & 1. On the other hand, slight deviations
from multifractality in its strict sense may remain unno-
ticed when performing numerical schemes of obtaining
multifractal spectra. Therefore, it makes sense to calculate
the “average” value of f�a�, which might be obtained in
experiments:

�f�a�� � ln� p�r0, a��r0��j lnr0j . (17)

In Fig. 1, the resulting curve is compared with the experi-
mental results [1]. In both cases, there is a nearly linear
part f ~ a (which is the only part of the curve correspond-
ing to a strict multifractality), and there is a rapid [accord-
ing to Eq. (13) exponential] falloff at large values of a.
The differences can be attributed to (i) the fact that expres-
sion (13) is valid only at the asymptotic limit r0 ! 0 (the
effect of finite inertial range has been modeled by shifting
the curves up and right), and (ii) the different dimension-
alities of the velocity field.

Further we consider the long-time decay of the dye
fluctuations. As discussed earlier, this problem is mod-
eled by Eq. (10). The initial condition is given by
Eq. (5): F�s̃, 0� � d�s̃�. The solution can be found
via Laplace transform Fv �

R`
0 F dt. The function Fv
473
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FIG. 1. The multifractal spectrum of passive scalar dissipation
field in turbulent jet [1] (reproduced with permission). Bold
lines indicate the curve predicted by Eqs. (13), (14), and (17).
The following numerical values have been used: u 	 0.15, D 	
0.6, r0 	 0.01, t 	 40. Dashed lines correspond to regions,
where the inequalities in (13) are not satisfied; the transition
between the two asymptotic branches is sketched by the gray
line. The experimental data describe 2D cross sections of the
3D dissipation field; the analytic curve is obtained for one-
dimensional cross sections of the 2D field.

is expressed via Hankel functions, the order of which
is

p
4Dv 1 u2�2D. The Laplace transform tends to

infinity for v ! 2u2�4D; therefore we conclude that the
asymptotic solution is

F ! i exp�2u2t�4D�H �1�
0 �ik

p
2k�D�ku�2D , (18)

where H�1� is the Hankel function of the first kind. The
exponential decay, independent of molecular diffusivity, is
in full agreement with the earlier results [7,9].

Finally, we consider the power spectrum of dye in the
case of a steady source, when the evolution of the tracer
concentration is defined by Eqs. (1) and (3). Again, we
model the process by Eq. (10), but the initial condition is
to be substituted by boundary condition

l�0, t� � 1 , (19)

corresponding to the statistically stationary source (3). We
are looking for the stationary solution of the system (10)
and (19). This is given again by the Hankel function:

F � AH
�1�
u�2D�ik

p
2k�D �ku�2D , (20)

where A � �H�1�
u�2D�i

p
2k�D ��21. Using asymptotic ex-

pansion of the Hankel function, at k ¿
p

D�2k we have
F ! k�u�D21��2 exp�2k

p
2k�D�, implying an exponen-

tial tail as predicted by Kraichnan [6]; however, at the
intermediate values of the argument a clearly different be-
havior is predicted. Expression (20) provides an excellent
fit with the experimental data obtained with a magnetically
474
forced two-dimensional fluid [8], yielding u 	 0.21,
u�D 	 0.24, k�D 	 5 3 1024.

In conclusion, we discuss the limitations and
possible further developments of the model. While the
type of external forcing g�r, t� does not limit the applica-
bility of Eq. (10) and defines just the boundary condition,
serious difficulties will arise in the case of dye gradients
and Eq. (7). Indeed, when dye is added, the gradients are
affected by the coherence between the existing patterns
and the newly added dye. For the same reason, here the
molecular diffusivity cannot be taken into account as
easily as in the case of power spectra.

Generalization of the model to the more realistic 3D
flows is relatively simple; the main idea is to study the
stretching of fluid surfaces. The velocity fields with turbu-
lent power spectra and a lower viscous cutoff scale are also
easily tractable. Then the main contribution to the stretch-
ing of fluid elements is made by the shortest-wavelength
pulsations; thus, Eq. (7) can be directly applied (however,
r21 no longer defines the characteristic space scale of fluc-
tuations). As an immediate application, the problem of
atmospheric (and oceanic) pollution can be mentioned: a
strongly localized source g�r, t� leads to the formation of
pollutant “blobs,” the size of which is related to the local
stretching factor. The approach devised for the multifractal
analysis can be also extended to the problems of the kine-
matic magnetic dynamos [3] and the structure functions of
scalar fields.
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