
VOLUME 84, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 15 MAY 2000
Role of Fermi-Level Pinning in Nanotube Schottky Diodes
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At semiconductor-metal junctions, the Schottky barrier height is generally fixed by “Fermi-level pin-
ning.” We find that when a semiconducting carbon nanotube is end contacted to a metal (the optimal
geometry for nanodevices), the behavior is radically different. Even when the Fermi level is fully
“pinned” at the interface, the turn-on voltage is that expected for an unpinned junction. Thus the thresh-
old may be adjusted for optimal device performance, which is not possible in planar contacts. Similar
behavior is expected at heterojunctions between nanotubes and semiconductors.

PACS numbers: 73.61.Wp, 73.30.+y, 73.40.Ns, 85.30.Vw
Metal-semiconductor junctions play a crucial role in
electronic devices. They are useful as active device
elements (Schottky diodes), or simply to provide electrical
contact to a semiconductor device. The earliest model
suggested that any desired barrier height (including Ohmic
contacts) could be obtained by using a metal of appropri-
ate work function [1]. Unfortunately, the actual junction is
almost invariably a Schottky barrier, with the Fermi level
at the interface “pinned” deep in the semiconductor band
gap, regardless of the metal work function. This places a
serious constraint on device design.

For nanoscale devices based on carbon nanotubes (NTs)
or other linear molecules, it seems clear that contacts will
play an even more central role in device performance, since
the entire device may lie within nanometers of the inter-
face. Yet little is known about what role Fermi-level pin-
ning will play in such devices.

Most metal-NT junctions studied to date employ a
weak van der Waals side contact, as in Fig. 1a [2], and the
Fermi-level alignment at such contacts has recently been
considered [3]. However, as discussed by Zhang et al.
[4], in real applications an end-bonded junction with
strong (metallic�covalent) bonding will be preferable for
compactness and for robust electrical contact, and such
junctions have already been fabricated [4]. In such junc-
tions, one expects Fermi-level pinning just as in traditional
devices.

Here we show that this Fermi-level pinning, no mat-
ter how strong, cannot control the device properties of
metal-NT contacts in this geometry. In a planar geometry,
pinning determines the turn-on voltage; but for the quasi-
one-dimensional geometry of NTs, pinning at most cre-
ates a leaky tunnel barrier in series with the junction. The
low-temperature voltage threshold remains exactly that of
the unpinned interface. Thus the choice of the metal work
function may provide a powerful tool to control the contact
behavior—a tool that is not available for planar junctions.

The theory of Schottky barriers has at times been highly
controversial, with a disconcerting variety of models [5].
However, the key physics of Fermi-level pinning at planar
interfaces is actually rather straightforward [6–8]. As il-
lustrated in Fig. 2, the barrier height is fb � EC 2 EF ,
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where EC and EF are the energy of the conduction-band
edge and the Fermi level in the barrier region near the in-
terface. For simplicity, we restrict discussion throughout
to the barrier for electrons; a trivial modification gives the
barrier for holes. Also, we make the usual assumption that
the depletion length Ld is long compared to other length
scales here, so there is negligible band bending due to dop-
ing in the near-interface region.

For a metal and semiconductor separated by a thin vac-
uum gap (øLd), the barrier is simply [1]

fb0 � xm 2 xs , (1)

where xm and xs are the metal work function and semi-
conductor ionization potential. This is typically taken to be
the barrier expected in the absence of an interface dipole
[1]. (xm and xs depend on details of the free surface that
cannot be relevant to the real planar interface and are often
replaced with values for some idealized surface [8].)

However, at a metal-semiconductor interface there is
in general a finite density of states throughout the band
gap of the semiconductor near the interface, the so-called
“metal-induced gap states” (MIGS) [6,7]. Like surface
states, these are simply Bloch states of the semiconductor
having a complex wave vector. The boundary condition
at the interface with a metal allows states at all energies,
with states in the band gap decaying exponentially into the
semiconductor. These MIGS (together with their image
charge in the metal) give a dipole D at the interface. At a
planar interface, this raises or lowers the barrier to

fb � fb0 1 D . (2)

FIG. 1. Two types of nanotube�metal contacts: (a) nanotube
(crosshatched) side contacted by the metal by van der Waals ad-
hesion; (b) nanotube end bonded to the metal (covalent�metallic
bonding).
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FIG. 2. Schematic band diagram for planar Schottky barrier,
showing energy of Fermi level and local band edges vs distance
from interface (vertical line). (a) Large scale, showing band
bending over length Ld due to doping. (b) Closeup of interface
region, showing dipole (spread over length q21) due to MIGS.
See text for notation.

The occupancy of the gap states, and hence the dipole,
depends on the position of the Fermi level within the semi-
conductor band gap (Fig. 2). Within a linear theory this
can be written quite generally in terms of two parameters
EN and a as

D � a�EF 2 EN � � a�fbp 2 fb� . (3)

Here fbp � EC 2 EN is the barrier height in the limit of
strong pinning (large a), and EN is the “neutrality level,”
i.e., the Fermi-level position at which the dipole would
be zero. With Eq. (2), this gives a self-consistent barrier
height of

fb �
1

a 1 1
fb0 1

a

a 1 1
fbp . (4)

Simple arguments indicate that a 1 1 is at least equal
to the semiconductor dielectric constant, typically *10,
and this is supported by comparison with experiment [9].
Therefore fb � fbp � EC 2 EN . The position of EN

in the semiconductor band gap must in principle depend
on the atomic-level structure of the interface. However,
simple theories that identify EN with some generic midgap
position have had considerable success [7,9,10].

For NTs, we may immediately anticipate a fundamental
change because the reduced dimensionality of the inter-
face changes the screening. To calculate the behavior of
NT contacts, we need a more microscopic picture of the
interface dipole. However, we want a generic description,
independent of the atomic details of a specific interface.
We therefore consider a NT terminating at a planar metal
contact, modeling the dipole by a charge

s�z� � D0�EN 2 EF�e2qz (5)

in the NT plus an image charge in the metal. Here z is
the distance from the NT-metal interface, and EN varies
with z due to the electrostatic potential (as illustrated in
Fig. 2b).

Equation (5) is of course a simplification, but it is con-
sistent with the well-established picture of MIGS [6,7], and
it captures the key aspects of the real interface dipole. All
states in the band gap decay exponentially with distance,
4694
but each state has its own decay length, so the overall decay
is not truly exponential and varies somewhat with energy
in the band gap. Here q represents an appropriate aver-
age value. We note that a lower bound for q is twice the
NT p-band wave vector deep in the gap, so q . 1 nm21.
From the calculations of Chico et al. [11] we can extract
an effective decay constant of q � 2 nm21. (This may be
an underestimate, since we lack information on the con-
tribution of the most rapidly decaying gap states.) We do
not have an independent estimate of D0, and in general
this (like EN ) could be affected to some extent by atomic
details of the interface (including incorporation of impuri-
ties). We therefore consider a range of values, focusing on
the regime where D0 is large enough to fully pin the bands.
We emphasize that larger values of q or smaller values of
D0 would only strengthen our conclusions.

We self-consistently calculate the charge (5) and result-
ing potential. Details are as in [12]. We use parameters
for typical semiconducting nanotubes [13]: radius 0.7 nm
and band gap 0.6 eV. All calculations are for an infinite
NT with light n-type doping (atomic fraction 1024), but
the key conclusions also hold for an undoped NT of any
length ¿q21 with an Ohmic back contact. For concrete-
ness we take the neutrality level EN at the NT midgap, but
a different choice would not affect our conclusions. In a
real device, the NT would probably be embedded in a di-
electric to enhance mechanical and chemical stability. We
therefore include a dielectric constant of 3.9 as for SiO2,
but within our model this merely rescales D0 and so does
not affect our conclusions.

The calculated behavior at NT-metal contacts is shown
in Fig. 3 for different values of the pinning strength D0,
with q � 2 nm21. The corresponding planar junctions
are also shown for comparison. For the planar junction,
the dipole is a sheet, so it shifts the semiconductor bands
relative to the metal Fermi level even at “infinite” distances
(i.e., distances comparable to the lateral dimension). In
contrast, for the NT the dipole is localized in all three
directions, so its effect on the potential decays as z22 at
distances *2 nm.

We first consider the case of a high work function metal
(xm . xs 1 fbp), Fig. 3a, where Fermi-level pinning
tends to decrease the barrier for electrons. For a planar
junction (Fig. 3a inset) the barrier height decreases with
D0, asymptotically approaching the value fbp (0.3 eV
here) with the Fermi level at the neutrality level EN .

In contrast, at the NT junction this barrier lowering by
the interface dipole is confined to a region of �2 nm.
The magnitude of the effect increases with D0, shifting
the bands toward the pinned position. However, even for
very strong pinning, the effect is only local. At distances
¿2 nm (but øLd) from the junction there is still a bar-
rier fb0 � xm 2 xs (0.45 eV in our example) which the
electron must surmount.

Thus for the NT, Fermi-level pinning has no effect on
the Schottky barrier height in this case. Rather, the barrier
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FIG. 3. Local conduction-band edge for NT as in Fig. 1b,
versus distance z from interface. Here V � 0, q � 2 nm21,
nominal pinned barrier fbp � 0.3 eV. (a) High work func-
tion metal: fb0 � 0.45 eV. (b) Low work function metal:
fb0 � 0.15 eV. Dotted, dash-dotted, dashed, and solid lines
are for D0 � 0, 0.01, 0.1, and 1 state�(atom-eV), respectively.
Insets show planar junction for same parameters (and atomic
density 5 3 1022 cm23).

height is controlled by the metal work function, just as
if there were no pinning and no interface dipole. This
opens the possibility of controlling the barrier height by the
choice of metal. Even for a given metal, an atomically thin
surface coating can substantially change the metal work
function and so shift the voltage threshold of the device.

For a low work function metal we have a somewhat
different situation, shown in Fig. 3b. The interface dipole
raises the bands, creating an extra barrier for electrons, but
again, for NTs the effect is confined to a region �2 nm.
Electrons can tunnel through this barrier, so it decreases the
current but does not affect the low-temperature threshold
voltage.

For device operation, what matters most is the current
as a function of voltage. We calculate this for an infinitely
long tube (treated as in [12], using approximations that are
accurate in the low-current regime. A forward or reverse
bias V corresponds to raising or lowering the Fermi level
of the NT with respect to that of the metal by an amount
eV . The occupation of MIGS in Eq. (5) is determined by
the metal Fermi level. (There is a crossover region in the
NT where the local Fermi level is undefined; but the charge
density in this region is negligible, so the precise treatment
of the crossover does not affect the results.)

The current is given by the Landauer-Büttiker formula
for a one-dimensional system [14]:

I�V � �
4e
h

Z
P�E, V � �F�E 2 eV � 2 F�E�� dE . (6)

Here P�E, V � is the transmission probability across the
junction at bias V for electrons of energy E, and F�E� is the
Fermi function for the metal. Only the lowest conduction
band of the NT contributes here, giving two channels. The
transmission probability across the barrier is calculated
using the WKB approximation.

Within these approximations, a NT contact to a high
work function metal (Fig. 3a) is completely unaffected by
Fermi-level pinning. Regardless of the value of D0, the
entire I-V curve is that expected from standard models [1]
based on the unpinned barrier height.

The case of a low work function metal is somewhat
more complex. For clarity we begin with the behavior at
low temperature, i.e., the low-temperature limit of Eq. (6).
(We do not consider correlated-electron effects that arise
very near 0 K.) The tunneling probability P through the
local interface barrier is shown in Fig. 4a versus voltage
V . For a doped NT, the current is well approximated by
I�V � � I0P�V �, where the constant I0 depends on the dop-
ing and reflects the carrier density. (For an undoped tube
with Ohmic back contact, the carrier density increases with
voltage so I0 is no longer a constant.) We include results
for three different values of q to illustrate the dependence
on this parameter. Since the interesting regime is that of
strong pinning, for each value of q we choose the pin-
ning strength D0 large enough that the top of the barrier is
within 0.01 eV of its asymptotic (D0 ! `) position.

For biases less than the unpinned barrier, there is no cur-
rent. (The depletion region is too wide to tunnel through
except at extremely high doping.) As the bias increases
above the unpinned barrier height (0.15 eV in our ex-
ample), electrons can tunnel from the NT to the metal
through the localized barrier. Hence the device turns on at
the unpinned barrier height, instead of the pinned barrier
height as in a planar junction. Slightly above this thresh-
old, the width of the local barrier is roughly proportional
to q21, so the rate at which the current increases with volt-
age is sensitive to q. As the voltage increases, the bands on
the NT side of the barrier rise, and the local barrier due to
pinning decreases, vanishing at the nominal pinned thresh-
old fbp (or slightly before, due to incomplete pinning at
finite D0).

At finite temperature, there is current at any nonzero
voltage because of thermionic emission. This is already
included correctly in Eq. (6), within the usual approxima-
tions [1]. Calculated I-V curves at room temperature are
4695
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FIG. 4. (a) Tunneling probability versus voltage V , for NT
Schottky diode as in Fig. 3b at low temperature. Arrows indicate
unpinned (0.15 V) and pinned (0.29 V) barriers. Solid curve is
q � 2 nm21, dashed line is q � 1 nm21, dash-dotted line is
q � 4 nm21. (b) Room temperature I-V curve. Solid, dashed,
and dash-dotted lines are as in (a). Dotted lines are current
without tunneling (as for planar contacts), for barrier heights
0.15, 0.21, and 0.29 eV (left to right). See text for details.

shown in Fig. 4b. These are qualitatively similar to the
usual rectifying I-V curves of planar Schottky diodes, with
a sharp turn-on under forward bias and a small leakage cur-
rent under reverse bias.

For comparison we show dotted curves including only
thermionic emission over barriers fbp and fb0, as for a
pinned or unpinned planar junction. The real I-V curve
falls between these two limits, but is closer to the behavior
of an unpinned planar contact. Over a limited range of
voltage, the I-V curve can be fitted by classic thermionic
emission over an effective barrier of intermediate value
0.21 eV (middle dotted line).
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Our qualitative conclusions should also apply when the
metal is a wire rather than planar, although the “image
charge” will have a different spatial distribution. This
geometry has previously been considered for NT-NT
Schottky diodes [15], but that analysis did not include
any interface dipole (perhaps because fbp � fb0 in that
case).

Heterojunctions have also been fabricated between NTs
and semiconductors such as SiC [4]. There is a close
analogy between heterojunctions and Schottky barriers [8],
and we anticipate similar behavior. Band lineups at pla-
nar heterojunctions are usually controlled by alignment of
the neutrality levels of the two semiconductors, but for
NT-semiconductor junctions it should be possible to shift
the effective offset by treating the surface of the planar
semiconductor to alter the electron affinity.

F. L. acknowledges support from the NSERC of Canada.

[1] S. M. Sze, Physics of Semiconductor Devices (Wiley-
Interscience, New York, 1981).

[2] S. J. Tans et al., Nature (London) 386, 474 (1997); R. Mar-
tel et al., Appl. Phys. Lett. 73, 2447 (1998); A. Bach-
told et al., Appl. Phys. Lett. 73, 274 (1998); D. H. Cobden
et al., Phys. Rev. Lett. 81, 681 (1998).

[3] Y. Xue and S. Datta, Phys. Rev. Lett. 83, 4844 (1999).
[4] Y. Zhang et al., Science 285, 1719 (1999).
[5] M. Schlüter, Thin Solid Films 93, 3 (1982); Proceedings of

the 12th Annual Conference on the Physics and Chemistry
of Semiconductor Interfaces, edited by R. S. Bauer [J. Vac.
Sci. Technol. B 3, 1157–1223 (1985)].

[6] V. Heine, Phys. Rev. 138, A1689 (1965); S. G. Louie and
M. L. Cohen, Phys. Rev. B 13, 2461 (1976); C. Tejedor
et al., J. Phys. C 10, 2163 (1977).

[7] J. Tersoff, Phys. Rev. Lett. 52, 465 (1984).
[8] J. Tersoff, in Heterojunction Band Discontinuities: Physics

and Device Applications, edited by G. Margaritondo and
F. Capasso (North-Holland, Amsterdam, 1987), Chap. 1.

[9] J. Tersoff, Phys. Rev. B 32, 6968 (1985).
[10] M. Cardona and N. E. Christensen, Phys. Rev. B 35, 6182

(1987); W. A. Harrison and J. Tersoff, J. Vac. Sci. Technol.
B 4, 1068 (1986).

[11] L. Chico et al., Phys. Rev. Lett. 76, 971 (1996).
[12] F. Léonard and J. Tersoff, Phys. Rev. Lett. 83, 5174 (1999).
[13] J. Wildöer et al., Nature (London) 391, 59 (1998); T. W.

Odom et al., Nature (London) 391, 62 (1998).
[14] S. Datta, Electronic Transport in Mesoscopic Systems

(Cambridge University Press, Cambridge, 1995).
[15] A. A. Odintsov, e-print cond-mat /9910137.


