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Incompressible Paired Hall State, Stripe Order, and the Composite Fermion Liquid Phase
in Half-Filled Landau Levels
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We consider the two lowest Landau levels at half filling. In the higher Landau level �n � 5�2�, we find
a first-order phase transition separating a compressible striped phase from a paired quantum Hall state,
which is identified as the Moore-Read state. The critical point is very near the Coulomb potential and the
transition can be driven by increasing the width of the electron layer. We find a much weaker transition
(either second-order or a crossover) from pairing to the composite fermion Fermi-liquid behavior. A very
similar picture is obtained for the lowest Landau level, but the transition point is not near the Coulomb
potential.

PACS numbers: 73.20.Dx, 73.40.Hm, 73.40.Kp, 73.50.Jt
A two-dimensional electron gas in an intense perpen-
dicular magnetic field displays a host of collective ground
states. The underlying reason is the formation of two-
dimensional Landau levels (LL’s) in which the kinetic
energy is completely quenched. In the macroscopically
degenerate Hilbert space of a given Landau level, only the
Coulomb potential remains, making the system strongly
interacting. The fractional quantum Hall effect [1], at
rational fillings of the Landau levels, is one instance of
such a ground state (GS). Other examples occur at half
integral fillings of Landau levels. In the lowest Landau
level, rxx shows a shallow minimum and no plateau [2] in
rxy . This behavior has been associated with a compress-
ible Fermi-liquid-like state [3] of composite fermions (CF)
[4]. In sharp contrast, a plateau in rxy and activated rxx

has been observed at filling factor n � 5�2 [5], indicative
of an incompressible quantum Hall state. Above the sec-
ond Landau level, for n � 9�2, 11�2, 13�2, the transport
is highly anisotropic [6–8], suggesting the GS is a com-
pressible charge density wave (CDW) stripe state [9–11].

Some years ago we proposed [12] a spin-singlet wave
function CHR for the 5�2 effect based on the idea of elec-
tron pairing [13]. Moore and Read (MR) [14], building
on the analogy of this state to Bardeen-Cooper-Schrieffer
pairing of CF’s, proposed a similar spin-polarized pairing
wave function CMR:
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where a and b are spinor coordinates for up and down
spins, Pf�A� is the Pfaffian of an antisymmetric matrix A
[15], and C

�n�1�2�
L is the Laughlin state (for bosons).

Subsequently, Greiter, Wen, and Wilczek (GWW) [16]
suggested that the MR state may be a possible candidate
for the 5�2 effect. Recent numerical calculations by Morf
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[17] show the polarized state to have a lower energy than
spin-singlet states even without Zeeman energy. Yet, these
studies have not established what the true nature of the
5�2 state is. In this paper we present evidence which sug-
gests that the n � 5�2 effect indeed derives from a paired
state which is closely related to the MR polarized state
or, more precisely, to the state obtained by particle-hole
(PH) symmetrization of the MR state. We also show why
the transport may not be quantized [18] and may become
anisotropic upon tilting the field, as observed [19,20]. We
find a first-order phase transition from a striped phase to a
strongly paired state, after which the system evolves into
a Fermi-liquid-like state, either by a continuous crossover
to a weakly paired state or by a second-order transition to
a gapless state (our calculations cannot distinguish these
possibilities).

Our conclusions are based on numerical studies for up
to 16 electrons in two geometries: sphere and torus. The
torus is particularly convenient for investigating the na-
ture of the ground state at n � 1�2. All three states of
interest—composite fermion Fermi surface, pairing and
CDW—are realized at flux Nf � 2N (in units of flux
quanta). This avoids a problem on the sphere, where, for
a given N , different n � 1�2 states occur at slightly dif-
ferent NF . We consider only states within a given Landau
level and discard the kinetic energy. The Hamiltonian is

H �
X̀
m�0

Vm
2
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X
q

e2�1�2�q2

Lm�q2�
X
i,j

eiq?�Ri2Rj �, (3)

where Ri is the guiding center [21] coordinate of the ith
electron, Lm�x�’s are the Laguerre polynomials, and Vm is
the energy of a pair of electrons in a state of relative angular
momentum m. These are the pseudopotential parameters
[21,22]. The magnetic length is set to 1. Unless otherwise
specified the data presented here is for ten fully polarized
electrons in a hexagonal unit cell.

The Fermi-liquid state is well described by a Fermi sea
of composite fermions [23,24], which on the torus is [24]
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jCCF��ki��� � det
i,j

�exp�iki ? Rj�� jC�n�1�2�
L � , (4)

where the �ki� are distinct [and belong to the usual set of
wave vectors allowed by the periodic boundary conditions
(PBC’s)] and are clustered together to form a filled “Fermi
sea” centered on kav �

P
ki�N . The total momentum

quantum number K [25] is determined by the value of kav
relative to the set of allowed k’s (the CF state is essentially
left invariant by a uniform “boost” �ki� ! �ki 1 k�), and
takes one of N2 distinct values [25]. There are four dis-
tinct values of kav which are invariant under 180± rota-
tion: kav � 0 and kav halfway between allowed k vectors
(three distinct values which correspond to the three distinct
values of K for the MR state on the torus).

The n � 1�2 spin-polarized electron eigenstates of (3)
have particle-hole symmetry [26]; the CF state is almost
(99.935%) PH symmetric and also has a large projection
(99.25%) on the exactly PH-symmetric GS of the Coulomb
potential in the lowest Landau level.

The periodic MR states [16] can be obtained as the
zero-energy ground states of a 3-body short-range potential
[16], the corrected form of which is

H3 � 2
X

i,j,k

Si,j,k�=4
i =2

j �d2�ri 2 rj�d2�rj 2 rk� ,

where Si,j,k is a symmetrizer. Note that [in contrast to (3)]
H3 has no PH symmetry and the MR state does not possess
definite parity under PH transformations.

The nature of the ground state of (3) depends on the
relative strengths of the pseudopotentials, in particular V1
and V3 (even-m pseudopotentials do not affect polarized
states). Figure 1 and Fig. 4 (below) show the projection
of the CF and MR states on the exact GS in two dif-
ferent PBC geometries, as V1 and V3 are varied relative
to their Coulomb values in the first excited Landau level
�n � 1�. Varying V3 alone (the inset of Fig. 1), or vary-
ing both V1 and V3, yields similar results, though dV1

FIG. 1. The projection of the exact GS of the Coulomb in-
teraction in the n � 1 Landau level, plus an extra short-range
pseudopotential dV1 (dV3 in the inset), on the CF, MR, and
PH-symmetrized MR model states. The GS PH parity changes
at a level crossing near dV � 0.
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has an opposite effect to dV3. A study using spherical
geometry [17] also identifies the phase at large dV1 with
the CF liquid. A first-order phase transition from a com-
pressible state to an incompressible paired state is clearly
seen. The transition is very close to the Coulomb value
�dV1 � dV3 � 0�. We obtain similar results in the low-
est Landau level, except that the transition point occurs at
dV1 � 20.092, dV3 � 0 and at dV1 � 0, dV3 � 0.048.
Details of these studies will be given elsewhere. For both
Landau levels, we observe only the strongly paired state
in a narrow window. The projection of the MR state on
the exact ground state does not exceed 73% in this re-
gion. However, if the MR state is first PH symmetrized,
this projection becomes 97%. The two-particle correlation
function g�r� of the states before and after symmetrization
is shown in Fig. 2. The paired character of the MR state is
essentially unaltered (Fig. 2 shows that each electron has
one particularly close partner); the near isotropy of g�r�
is characteristic of the incompressible states, and should
improve with increasing system size.

An interesting feature in Fig. 1 is the absence of any
obvious sharp transition from the paired state to the com-
pressible Fermi-liquid-like CF state as V1 is increased fur-
ther. This is also seen in the excitation spectrum. Figure 3
shows the low-lying excitation spectrum as a function of
V1. Again, there is only one first-order level crossing tran-
sition (shown by up arrows). The levels that cross have the
same translational and 180±-rotation symmetry but belong
to opposite parities under PH transformation. The MR
state has a finite overlap with the exact GS on both sides
of the transition as it has components with both PH sym-
metries. As dV1 increases further, the excitation spectrum
gradually evolves from having a clear gap to the compres-
sible CF Fermi-liquid-like spectrum [23,24]. The
crossover is approximately at the point where the spectrum
begins to change at the level crossings of the excited states
(down arrows). Similar crossover behavior is also seen

FIG. 2. The real-space pair-correlation function for the MR
state and its PH-symmetrized counterpart, evaluated in the sec-
ond �n � 1� Landau level; their difference is also shown. g�r�
in a square unit cell is shown along a path from the origin O to
the midpoint of a side S, to a corner C, and back to O.
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FIG. 3. The low-lying spectrum (relative to the variational en-
ergy of the MR state) plotted vs dV1 for the n � 1; the inset
shows this for the n � 0 LL. The Coulomb point is dV1 � 0.
The energies are scaled by the bandwidth of the two-particle
system. The region between the arrows is the strong pairing
regime.

on the sphere, and in those geometries on the torus where
the most compact Fermi sea has 180±-rotation symmetry,
so the CF state has the same K as the MR state.

The hallmark of compressible CF states is the sensitiv-
ity of the GS K to the PBC geometry. For example, the
Fermi surface for 10 electrons with the square PBC does
not have 180±-rotation symmetry and has a K different
from the MR state. A sharp transition is seen in this case
(Fig. 4). As Figs. 1 and 4 clearly demonstrate, the evo-
lution to the CF state is strongly dependent on geometry
while the transition to the striped phase is not. We believe
this rules out a first-order transition to the CF liquid state.
The picture most consistent with our studies is that, after
the first-order transition to the paired state, the system may
always be paired, and smoothly crosses over from a strong
to a weak pairing regime as the interaction is varied. In
the weak pairing regime, such a system would exhibit CF
Fermi-liquid behavior at energy scales and temperatures
above the gap and paired quantum Hall behavior below
the gap; finite-size effects in our calculations will mask a
very small gap. If true, this would eliminate the infrared
divergences of [3].

In agreement with this, we find substantial pairing char-
acter in the lowest Landau level for the Coulomb potential
in both spherical and toroidal geometries. For example,
on the sphere (with flux Nf � 2N 2 3) we found that the
projections of the MR state on the exact ground state of the
Coulomb potential increases with system size (43%, 52%,
and 56% at N � 12, 14, and 16), even though the rele-
vant L � 0 Hilbert space grows twentyfold. This would
be consistent with weakly bound pairs that are larger than
the linear system size at small N; however, because we
cannot study larger N , we are unable to conclusively ex-
clude the possibility of a second-order (or even a weakly
first-order) phase transition to a gapless CF state.

We next turn to the compressible state seen to the left
of the transition in Figs. 1, 3, and 4. To show its char-
FIG. 4. Same as Fig. 1 but for a square unit cell. The inset
shows the excitation spectrum (the GS energy is subtracted) as a
function of dV1. The transition points are marked by the collapse
of the gap. In the striped phase (left portion), one recovers the
typical degeneracies seen in the n � 2, 3 LL’s.

acter more clearly, we reduce V1 by 0.05 (about 10% of
its Coulomb value). Here, as in the Fermi-liquid state,
the GS K vector changes with size and geometry, indi-
cating that the state is compressible. We now consider
12 electrons in a rectangular unit cell and tune the aspect
ratio to 0.5. We find two strong peaks in the static guid-
ing center structure function S0�q� and in the charge sus-
ceptibility x�q� with ordering wave vector q� � �1.1, 0�
which constitute the signature of the CDW stripe ordering
[11]. This system forms three stripes and the weight of the
single Slater determinant state with the occupation pattern
000011110000111100001111 is about 58%. Edge fluctua-
tions of stripes seem to be stronger here than in the higher
Landau levels; V1 has to be somewhat reduced below the
transition for the characteristic degeneracies of the broken
symmetry phase to be well developed (inset of Fig. 4).

We believe that the proximity of the critical point to
the Coulomb potential is the principal reason for the

FIG. 5. The overlap squared of the two model states as the
layer width w is varied in the n � 1 Landau level. The inset
shows the boundary between striped and paired phases and how
layer thickness changes dV1 and dV3 as w is varied from 0 (at
the 3) to 1. The system crosses the phase boundary at w � 0.3
along the solid line.
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disappearance of the paired Hall state upon tilting the
field [27]. One effect of the tilted field is to compress
the 2D layer [16,28]. Indeed, we have found that varying
the layer width drives this transition (as suggested by
GWW [16]) in most of the PBC geometries that we have
studied. The critical width varied from 0.23 to 2.4 in
these systems. Figure 5 shows the overlap (squared) as a
function of the layer width in the n � 1 Landau level. We
have used the Fang-Howard model for layer profile (with
w � 2b) [21,29]. In the lowest Landau level, the GS
of the Coulomb potential is well in the CF regime. The
projection on the MR state increases from 54% for a thin
layer to 64% for very wide layers (83% on the PH-sym-
metrized MR state). For both Landau levels, increasing
the layer width increases the pairing correlations, as also
seen in Monte Carlo calculations [30].
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DMR-9809483 (F. D. M. H.). We thank ITP-UCSB for
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Note added.—A realistic potential taking into account
finite layer width, screening by filled Landau levels and
tilted field effects, including mixing of subband levels,
(modeled for Eisenstein’s experimental samples [20] and
supplied to us by Girvin, Jungwirth, and MacDonald),
confirms that (a) the paired state at n � 5�2 and zero tilt
is indeed described by the symmetrized MR state (with
98% weight) and (b) tilting drives the system into a stripe
phase. Details of these studies will be given elsewhere.
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