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A model with competing short-ranged attractions and long-ranged repulsions that describe
organized patterns in systems like Langmuir monolayers, magnetic films, and adsorbed monola
studied using numerical simulations and analytic theory. Simulations provide strong evidence co
ing that the stripe phase order is destroyed in a defect unbinding transition. Large scale compute
lations are in agreement with an analytic scaling theory, which also predicts an eventual crossove
defect-mediated stripe melting to a spin-disordering (or particle-mixing) mechanism with decreas
pulsion strength.

PACS numbers: 68.35.Rh, 05.65.+b, 64.60.Cn, 75.70.Kw
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Examples of two-dimensional (2D) systems which e
hibit spontaneous modulations are Langmuir monolay
[1], thin magnetic films [2], and physisorbed monolaye
on solid surfaces [3]. These systems are diverse at
molecular level, yet the patterns of organization o
served—stripes, bubbles, and elongated domains inter
diate between stripes and bubbles—show remarkable
fascinating universality. The observed commonality aris
because, in all systems mentioned, the self-organi
structures are due to a competition between short-ran
attractive forces and long-range repulsions. The repuls
interaction has been demonstrated to originate fr
actual or effective parallel dipoles in all the experimen
mentioned above [4–7], so it decays with distance asR23.

The observed universality of the self-organized patte
and the fact that the phenomena occur on a length s
much longer than the molecular length scale justify t
study of a simplified Hamiltonian which contains the e
sential ingredients governing self-organization in these s
tems:

2H �kT � J
X

�R,R0�
sRsR0 2 A

X
R,R0

sRsR0

jR 2 R0j3
1 h

X
R

sR .

(1)

Besides the domain forming systems already discussed,
vature instabilities of biological membranes [8] have be
explained by invoking this model. Elastic forces asso
ated with lattice mismatch between an adsorbed layer a
crystal surface produce very similar domain structures [
and indeed the elastic case can be regarded as the ten
generalization of the dipole repulsion problem treated h
[10]. From a fundamental scientific viewpoint, the sy
tems listed above provide some of the cleanest exp
mental realizations of self-organization—“clean” in th
sense of having a reasonably simple and well-confirm
microscopic model. However, this model is poorly unde
stood. The phase diagram of the systems governed by
Hamiltonian of Eq. (1) is unknown, and the types of el
mentary excitations leading to phase transitions are
subject of speculation.
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The phase diagrams of models like the one specified
Eq. (1), or continuum versions of the model, have bee
studied using mean field theory [11,12], or by Brazovskĭ
[13] with a self-consistent approximation. These trea
ments predict transitions between stripe phases, orde
lattices of bubbles, and isotropic phases. Previous simu
tions by Hurley and Singer for the dipolar lattice gas mod
[14] have confirmed that the model of Eq. (1) does suppo
the experimentally observed patterns—stripes, bubbl
and elongated intermediate domains—in the 2D syste
of interest. Our present simulations are far more extensi
as described below, and focus on the stripe phase (h � 0).
In an insightful discussion, Garel and Doniach [11] spec
lated whether topological defects could provide the mech
nism for a Kosterlitz-Thouless (KT) type phase transitio
[15,16] out of the low-temperature stripe phase. Howeve
their theoretical treatment could not settle the issue and n
ther could all subsequent theoretical treatments [17–1
Our results, based on both analytical theory and compu
simulations, shed light on this issue for the first time. Th
answer is that this model supports more than one stri
disordering mechanism, and hence the transition is me
ated by topological defects only in a portion of the phas
diagram.

The numerical simulations of the model (1) are particu
larly challenging for several reasons. The interactions a
long ranged, and hence the calculation of energy chan
upon a spin flip in a system ofN spins is nominally of or-
der N , unlike the usual Ising model. Lengthy simulation
are needed for spin domains to relax and capture an eq
librium ensemble. Phase transitions occur at a temperat
which, for our simulations at relative repulsion strengt
h � A

J � 0.43, is roughly 1
10 the value at which the bare

Ising model disorders. The Metropolis Monte Carlo (MC
acceptance rate becomes prohibitively small at these l
temperatures, and special sampling techniques are
quired. Finally, to test an analytic result derived below
that the stripe melting temperature rises at small values
h, techniques to handle very large systems are requir
since the domain length scale explodes exponentially ash
© 2000 The American Physical Society 4657



VOLUME 84, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 15 MAY 2000
decreases. We pushed our simulations to as small values
of h as practical.

In order to carry out the large scale computer simula-
tions needed, we have combined a fast multipole method
(FMM), originally proposed by Greengard and Rokhlin
[20], and a variant of a non-Metropolis MC sampling tech-
nique introduced by Creutz [21]. The essential features of
the FMM we have used are the following: (1) the system
is divided into a hierarchy of levels; (2) only interactions
between spins in close proximity are directly calculated;
(3) spins far from the target of a trial move are grouped
and a multipole expansion gives the contribution of the
group to the interaction field at the target; (4) increasing the
distance from the target, the scale of contributing groups
increases as well. Our simulations exhibit the expected
FMM scaling of CPU time for a MC pass to be O �N lnN�
as opposed to O �N2� in a direct-sum calculation of the in-
teraction potential. The non-Metropolis MC technique we
utilized is based on Creutz’s microcanonical Monte Carlo
algorithm [21]. In the canonical form of the algorithm,
trial updates to a group of spins are attempted until an en-
ergetically allowed path for the system 1 thermal demon
is found. This allows us to attempt trial moves to many
spin configurations per energy calculation, greatly increas-
ing program efficiency at low temperature. Specifically,
we attempted updates to one of the 128 possible configu-
rations for hexagonal groups of seven spins on a triangular
lattice. Typically, a successful move is found for 30% of
the groups visited, far greater than Metropolis Monte Carlo
at these temperatures.

We chose a triangular, rather than square, lattice to mini-
mize the influence of the underlying lattice so that our re-
sults would apply to continuum systems. Stripe interfaces
have lowest energy when aligned along favored directions
of the lattice, thereby introducing a p-fold symmetry-
breaking orientational field. At low temperatures, Joséet al.
[22] showed that these fields are always relevant perturba-
tions. However, their results from an exact duality relation
for the Villain model indicate that a p-fold lattice field be-
comes irrelevant below the Kosterlitz-Thouless transition
temperature for p . 4, hence our preference for the trian-
gular (p � 6) over the square (p � 4) lattice [18,19].
4658
Our simulations [23] show clearly demarcated domains
in both the ordered and disordered phases (Fig. 1). Hence
the transition proceeds via defects in the ordered stripe do-
mains. Visual evidence suggests that the mechanism is a
Kosterlitz-Thouless type unbinding of dislocations, present
in the oredered phase [Fig. 1(a)], into disclinations, which
are seen to proliferate in the disordered phase [Fig. 1(b)].
An order parameter was designed [14] to measure the ori-
entational alignment of the stripe interfaces,

g2 �

*
1
N

X
�R,R0�

dsR ,2sR0 e2iuR,R0

+
, (2)

where dsR,2sR0 picks out pairs of spins at an interface and
uR,R0 is the angle that a vector joining sites R and R0

makes with a reference direction. The stripe melting tran-
sition was located by tracking the order parameter as a
function of temperature for various values of h and sys-
tem size, as shown in Fig. 2. The dimensionless heat ca-
pacity, ≠�E�N�

≠�kBT � � N21�kBT �22����E 2 �E��2���, is shown as a
function of temperature in Fig. 3 through the transition re-
gion for several values of the relative repulsion strength,
h � A

J . One of the distinguishing features of the KT
mechanism is the absence of a singularity in the heat ca-
pacity [15]. The visual evidence of Fig. 1 and the heat
capacity data are consistent with stripe melting mediated
by topological defect unbinding for those values of h for
which it is practical to perform simulations. We also at-
tempted to generate data for a finite-size scaling analysis,
as has been done to confirm the KT mechanism for other
systems [24]. The large number of elementary degrees of
freedom per topological defect in our case made the task
computationally unfeasible.

The domain interfaces are sharp within the range of h

covered by our simulations, as seen in Fig. 1, and over-
turned spins within a domain are rare. We took advan-
tage of this feature to construct an analytic scaling theory
which predicts how the stripe melting temperature should
vary with h. With sharp domain interfaces, the energy
of the system can be approximated well by line integrals
over domain contours �Ci�, and integrals over domain ar-
eas �Di�Ci�� associated with each contour [5,25]:
E ��Ci� jA, J� � 4

Ω
Jg

X
i

Z
Ci

dl 1
A
s2

X
i,j

Z
Di

dr
Z
Dj

dr0jr 2 r0j23

2
X

i

A
2s2

X
i

Z
Di

dr
Z
Di

dr0jr 2 r0j23

æ
1 const .

jr2r0j.a (3)
In the above expression, s is the area associated with
each spin, Jg is the line tension originating from nearest
neighbor interactions, a is a microscopic cutoff length, and
the energy function E is in units of kBT . Now we con-
sider a configuration of contours, �bCi�, which is identical
to the original configuration except that the length scale of
all domains is increased by a factor b. The first and sec-
ond terms in Eq. (3) are easily seen to increase by a factor
b compared to their original values. The third term in (3)
scales in a nontrivial way, but we can approximate its de-
pendence on b using the energy per domain of perfectly
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FIG. 1. Typical configurations from the (a) ordered phase �J �
1.4� and (b) disordered phase �J � 1.3� at relative repulsion
strength h � A

J � 0.27.

straight stripe domains [25]. Now we search for relation-
ships between the original and scaled systems so that

E ��bCi� jA, J� � E ��Ci� jA0, J0� 1 const, (4)

the implication being that the system controlled by pa-
rameters �A, J� exhibits the same domain configurations
except on a length scale related by the factor b to the
original system at �A0, J0�. In particular, this provides a
relationship between the stripe melting point of systems
with different values of h.

Using the expression for straight stripe domains in (3)
in the regime where domain width is large compared to
the lattice spacing, we find that the domain length scale
increases exponentially as h decreases,

b � exp

∑
gs2

2

µ
1
h

2
1

h0

∂∏
,

µ
h0 �

A0

J0

∂
, (5)

a result that is expected based on previous studies of do-
main energetics [5,25], plus a new result that depicts the
temperature scaling with h,

J � J0 exp

∑
2

gs2

2

µ
1
h

2
1

h0

∂∏ µ
h0

h

∂
. (6)

FIG. 2. The twofold order parameter g2 is plotted as a function
of temperature T for several values of h � A

J . With decreasing
repulsion strength, stripes widen and stripe melting temperature
shifts upward. The solid lines are drawn as a guide to the eye.
The defect-mediated stripe melting transition is predicted
to occur at higher temperature as h is lowered.

The range of validity of expressions (5) and (6) is
bounded at large h by the point at which the domain size
becomes comparable with the microscopic cutoff a and
the continuum expressions lose validity. Far more inter-
esting is the bound at small h. Equations (5) and (6)
are valid for sharp domain interfaces. However, as the
stripe melting temperature increases according to (6), it
will eventually approach the region in which patches of
overturned spins appear within the domains, and the sys-
tem configuration can no longer be specified by a set of
contours �Ci�. When the stripe melting temperature pre-
dicted by (6) approaches the bare Ising model critical tem-
perature, we expect that the defect-mediated stripe melting
mechanism will be supplanted by disordering of the spins
within domains: as temperature is raised the domains
will simply fade away before defects destroy stripe order.
To test the predictions in (5) and (6) the model must be
studied at a range of h values which, as explained earlier,
places severe demands on simulation technology.

We have located the stripe melting transition in a range
of h values between 0.27 and 0.43 (Fig. 2). Each time
we checked for convergence of the stripe melting tempera-
ture with system size, except for systems of 76 � 117 649
spins, the largest simulations performed. Our simula-
tions corroborate the prediction of our analytic theory that
stripes widen and stripe melting temperature shifts upward
with decreasing repulsion strength, i.e., decreasing h. We
present a comparison between Tc predicted by our ana-
lytic theory and the values determined in the simulations
in Fig. 4. The inset of Fig. 4 indicates the phase dia-
gram implied by our analytic and numerical results: defect-
mediated stripe melting moving to higher T or h across
the solid phase boundary, and loss of twofold stripe or-
der via disintegration of stripe domains across the dashed

FIG. 3. The dimensionless heat capacity, CV

NkB
, is shown as a

function of temperature difference from the stripe melting tem-
perature for several values of h � A

J . In agreement with the
Kosterlitz-Thouless mechanism, there is no heat capacity anom-
aly at the transition temperature (T 2 Tc � 0 in these plots).
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FIG. 4. Stripe melting temperatures predicted by our analytic
theory (solid line) and determined from computer simulations
(symbols). Two points are plotted for h � 0.43, correspond-
ing to system sizes of 74 and 75 spins. The inset shows the
phase diagram implied by simulation results and analytic scaling
theory.

phase boundary. Observation of the crossover away from
defect-mediated stripe melting in our simulations is not
feasible; Eq. (6) predicts that the defect-mediated stripe
melting point would approach the bare Ising model critical
temperature at h 	 0.14, necessitating simulations of the
order of 107 spins. Also in accordance with the scaling
notion, energy fluctuations at the stripe melting tempera-
ture, as measured by CV , are independent of h for domains
large compared with the lattice, for all but the largest value
of h (smallest domains) in Fig. 3.

The results shown in Fig. 4 for the first time explain how
compression could induce melting of a Langmuir mono-
layer stripe phase, as observed by Seul and Chen [26].
Compression decreases the spacing between surface di-
poles, increasing the magnitude of dipolar repulsions while
weakly affecting the shorter-ranged attractive interactions,
increasing h and thereby moving the system from left to
right across the phase boundary in Fig. 4. The crossover
we predict between defect-mediated stripe melting and
non-defect-mediated melting should be experimentally ob-
servable by tracking the number of topological defects,
the density/magnetization difference in the stripe phase,
or the heat capacity. Locating the crossover itself would
require a material with a “ tunable” effective h. Tuning h

might be achieved by chemical or compositional modifica-
tion in the case of Langmuir monolayers, or modification
of materials properties for thin magnetic films.
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