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Viscous Stabilization of 2D Drainage Displacements with Trapping
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We investigate the stabilization mechanisms due to viscous forces in the invasion front during drainage
displacement in two-dimensional porous media using a network simulator. We find that in horizontal
displacement the capillary pressure difference between two different points along the front varies almost
linearly as a function of height separation in the direction of the displacement. The numerical result
supports arguments taking into account the loopless displacement pattern where nonwetting fluid flows
in separate strands (paths). As a consequence, we show that existing theories developed for viscous
stabilization are not compatible with drainage when loopless strands dominate the displacement process.

PACS numbers: 47.55.Mh, 07.05.Tp
Immiscible displacement of one fluid by another fluid in
porous media generates front structures and patterns rang-
ing from compact to ramified and fractal [1–3]. When a
nonwetting fluid displaces a wetting fluid (drainage) at a
low injection rate, the nonwetting fluid generates a pat-
tern of fractal dimension equal to the cluster formed by
invasion percolation [4]. The displacement is controlled
solely by the capillary pressure, that is, the pressure differ-
ence between the two fluids across a pore meniscus. At a
high injection rate and when the viscosity of the nonwet-
ting fluid is higher or equal to the viscosity of the wetting
fluid, the width of the displacement front stabilizes and a
more compact pattern is generated [2,5].

The purpose of the present Letter is to investigate the sta-
bilization mechanisms of the front due to viscous forces.
To study the stabilization mechanisms we consider two-
dimensional (2D) horizontal drainage at different injec-
tion rates. Since the displacement is performed within the
plane we neglect gravity. We present simulations where
we have calculated the capillary pressure difference DPc

between two different pore menisci along the front sepa-
rated a distance Dh in the direction of the displacement
[Fig. 1(a)]. The simulations are based on a network model
that properly describes the dynamics of the fluid-fluid dis-
placement as well as the capillary and viscous pressure
buildup [6,7]. Simulations show that for a wide range of
injection rates and different fluid viscosities DPc varies al-
most linearly with Dh (Figs. 2 and 3). Assuming a power
law behavior DPc ~ Dhk we find k � 1.0 6 0.1. This is
a surprising result because the viscous force field that sta-
bilizes the front is nonhomogeneous due to trapping of the
wetting fluid behind the front and to the fractal behavior
of the front structure.

Based on the observation that the displacement struc-
tures are characterized by loopless strands of nonwetting
fluid [Fig. 1(a)], we also present arguments being sup-
ported by our numerical findings. We conjecture that the
arguments might affect the behavior of the front width ws

as a function of the capillary number Ca. Here Ca denotes
the ratio between viscous and capillary forces and in the
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following Ca � Qmnw�Sg, where Q is the injection rate,
S is the cross section of the inlet, and mnw is the viscosity
of the nonwetting phase.

In the literature [8–11] there has been suggested slightly
different scaling behavior of ws as a function of Ca and
a general consensus has not yet been reached. However,
none of them consider the evidence observed here that
the displacement patterns are loopless and that nonwet-
ting fluid flows only in strands to displace wetting fluid.
As a consequence, we show that earlier proposed theories
[8–11] cannot be used to describe drainage when loopless
nonwetting strands dominate the displacements.

Before we present the numerical results and the theo-
retical evidence, we briefly introduce the network model.
The model porous medium consists of a square lattice of
cylindrical tubes oriented at 45± to the longest side of the
lattice [Fig. 1(a)]. Four tubes meet at each intersection
where we put a node having no volume. The disorder is

FIG. 1. (a) The displacement pattern of a simulation on a lat-
tice of 25 3 35 nodes. Nonwetting fluid (dark grey and black)
is injected from below and wetting fluid (light grey) flows out
along the top row. In the figure, DPc is the capillary pressure
difference between a meniscus at the bottom filled dot and a
meniscus at the topmost filled dot, separated a distance Dh in the
direction of the displacement. The black tubes indicate strands
containing no loops, where nonwetting fluids flow. The dark
grey tubes connecting to the strands, are dead ends where non-
wetting fluid cannot flow because of trapped wetting fluid. (b) A
tube filled with wetting fluid and surrounded on both sides by
nonwetting fluid is trapped.
© 2000 The American Physical Society 4589
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FIG. 2. DPc as a function of Dh for high and intermediate Ca
with M � 100 on a lattice of 25 3 35 nodes and for low Ca
with M � 1 on a lattice of 40 3 60 nodes.

introduced by (1) assigning the tubes a radius r chosen at
random inside a defined interval or (2) moving the inter-
sections a randomly chosen distance away from their initial
positions. In (1) all tubes have equal length d but different
r . (2) results in a distorted square lattice giving the tubes
different lengths. Here r � d�2a where a is the aspect
ratio between the tube length and its radius.

The tubes are initially filled with a wetting fluid of vis-
cosity mw and a nonwetting fluid of viscosity mnw $ mw is
injected at constant injection rate Q along the bottom row
(inlet). The viscosity ratio M is defined as M � mnw�mw .
The wetting fluid is displaced and flows out along the top
row (outlet). There are periodic boundary conditions in the
orthogonal direction. The fluids are assumed immiscible,
hence an interface (a meniscus) is located where the fluids
meet in the tubes. The capillary pressure pc of a menis-
cus is given by pc � �2g�r� �1 2 cos�2px�d��. The first
term is the Young-Laplace law for a cylindrical tube when
perfect wetting is assumed and in the second term x is the
position of the meniscus in the tube (0 # x # d). Thus,
with respect to the capillary pressure we treat the tubes as
if they were hourglass shaped with effective radii follow-
ing a smooth function. By letting pc vary as above, we
include the effect of local readjustments of the menisci at
pore level [6] which is important for the description of burst
dynamics [12]. The detailed modeling of pc costs compu-
tation time, but is necessary in order to properly simulate
the capillary pressure behavior along the front.

The volume flux qij through a tube between the ith
and the jth node is given by the Washburn equation [13]:
qij � 2�sijkij�mij� �pj 2 pi 2 pc,ij��dij . Here kij is
the permeability of the tube, sij is the average cross sec-
tion of the tube, pi and pj are the pressures at nodes i and
j, respectively, and pc,ij is the sum of the capillary pres-
sures of the menisci inside the tube. A tube partially filled
with both liquids is allowed to contain one or two menisci.
Furthermore, mij denotes the effective viscosity given by
the sum of the volume fractions of each fluid inside the
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FIG. 3. log10�DPc� as function of log10�Dh� for drainage simu-
lations initiated on IP patterns at Ca � 9.5 3 1025 and M �
100. The result is averaged over four different runs and the
error bars denote the standard error in the mean. The slope of
the solid line is 1.0.

tube multiplied by their respective viscosities. Inserting
the above equation for qij into Kirchhoff equations at ev-
ery node (volume flux conservation),

P
j qij � 0, consti-

tutes a set of linear equations which are to be solved for
pi . The set of equations is solved by using the conjugate
gradient method with the constraint that Q is held fixed.
See Refs. [6,7] for details on the numerical scheme updat-
ing the menisci and solving pi .

The front between the two phases is detected by running
a Hoshen-Kopelman algorithm [14] on the lattice. The
front width is defined as the standard deviation of the dis-
tances between each meniscus along the front and the av-
erage front position in the direction of the displacement.
DPc as a function of Dh is calculated by taking the mean
of the capillary pressure differences between all pairs of
menisci separated a distance Dh along the front. The cap-
illary pressure difference between a pair of menisci is cal-
culated by taking the capillary pressure of the meniscus
closest to the inlet minus the capillary pressure of the
meniscus closest to the outlet [Fig. 1(a)].

Figure 2 shows DPc as a function of Dh for simula-
tions performed at three different Ca’s with M � 100 or
1. The simulations with M � 100 were performed on a
25 3 35 nodes lattice with mnw � 10 P, mw � 0.10 P,
and g � 30 dyn�cm. The disorder was introduced by
choosing the tube radii at random in the interval 0.05d #

rij # d. The tube length was d � 0.1 cm. The simu-
lations with M � 1 were performed on a distorted lat-
tice of 40 3 60 nodes where 0.02 # dij # 0.18 cm and
rij � dij�2a with a � 1.25. Here mnw � mw � 0.5 P.
To obtain reliable average quantities we did 10–30 simu-
lations at each Ca with different sets of random rij or dij .

From Fig. 2 we observe that DPc increases roughly lin-
early as a function of Dh. At lowest Ca no clear stabi-
lization of the front was observed due to the finite size of
the system. At higher Ca the viscous gradient stabilizes
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the front. The gradient causes the capillary pressure of the
menisci closest to the inlet to exceed the capillary pres-
sure of the menisci lying in the uppermost part. Thus, the
menisci closest to the inlet will more easily penetrate a nar-
row tube compared to menisci farther downstream. This
will eventually stabilize the front.

To save computation time and thereby be able to study
DPc on larger lattices in the small Ca regime, we have gen-
erated bond invasion percolation (IP) patterns with trap-
ping on lattices of 200 3 300 nodes. The IP patterns were
generated on the bonds in a square lattice with the bonds
oriented diagonally at 45±. Hence, the bonds correspond to
the tubes in our network model. Each bond was assigned a
random number fij in the interval �0, 1�. A small stabiliz-
ing gradient g � 0.05 was applied, giving an occupation
threshold tij of every bond: tij � fij 1 ghij [8,15]. Here
hij denotes the height of the bond above the bottom row.
The occupation of bonds started at the bottom row, and
the next bond to be occupied was always the bond with
the lowest threshold value from the set of empty bonds
along the invasion front. The generated IP patterns are
similar to the site-bond IP patterns in [16] and we assume
they are statistically equal to structures that would have
been obtained in a corresponding complete displacement
simulation.

When the IP patterns became well developed with
trapped (wetting) clusters of sizes between the bond
length and the front width, the tubes in our network model
were filled with nonwetting and wetting fluids according
to occupied and empty bonds in the IP lattice. Moreover,
the radii rij of the tubes were mapped to the random num-
bers fij of the bonds as rij � �0.05 1 0.95�1 2 fij��d.
Thus, 0.05d # rij # d and we set the tube length
d � 0.1 cm. Note that rij is mapped to 1 2 fij , because
in our IP algorithm the next bond to be invaded is the one
with the lowest threshold value, opposite to the network
model, where the widest tube will be invaded first.

After the initiation of the tube network was completed,
the network model was started and the simulations were
run a limited number of time steps before it was stopped.
The number of time steps was chosen sufficiently large
to let the menisci along the front adjust according to the
viscous pressure set up by the injection rate.

In total, we generated four IP patterns with different sets
of fij and every pattern was loaded into the network model.
The result of the calculated DPc versus Dh is shown in
Fig. 3 for Ca � 9.5 3 1025 and M � 100. If we assume
a power law DPc ~ Dhk , we find k � 1.0 6 0.1. The
slope of the straight line in Fig. 3 is 1.0. We have also
calculated DPc for Ca � 2 3 1026 with M � 1 and M �
100 by using one of the generated IP patterns. The result
of those simulations is consistent with Fig. 3.

Wilkinson [8] was the first to use percolation theory to
deduce a power law between ws and Ca when only vis-
cous forces stabilize the front. In 3D, where trapping of
wetting fluid is assumed to be of little importance, he sug-
gested ws ~ C2a
a and a � n��1 1 t 2 b 1 n�. Here t

is the conductivity exponent and b is the order parame-
ter exponent in percolation. Blunt et al. [10] used a simi-
lar approach; however, they found a � n��1 1 t 1 n�
in 3D. This is identical to the result of Lenormand [9]
discussing limits of fractal patterns between capillary fin-
gering and stable displacement in 2D porous media. Blunt
et al. also deduced a scaling relation for the pressure drop
DPnw across a height difference Dh in the nonwetting
phase of the front and found DPnw ~ Dht�n11. Later on,
Xu et al. [11] used the arguments of Gouyet et al. [17]
and Wilkinson [8] to show that DPnw ~ Dht�n1dE212b�n ,
where dE is the Euclidean dimension of the space in which
the front is embedded. They also argued that DPc �
DPnw 2 DPw , where DPw denotes the pressure drop in
the wetting phase of the front, is linearly dependent on
Dh due to the compact displaced fluid [see Fig. 1(a)].
Thus, the result of Xu et al. would in 2D predict DPc ~

Dh1.9 where we have used t � 1.3, n � 4�3, b � 5�36,
and dE � 2. Our simulations give DPc ~ Dhk and k �
1.0 6 0.1. Below we present an alternative view on the
displacement pattern from those first suggested by Wilkin-
son. The alternative view is based upon the loopless non-
wetting strands and is supported by our numerical result.

The simulated displacement patterns show that the
nonwetting fluid contains no closed loops [Fig. 1(a)]
because wetting fluid may be trapped in single tubes, due
to volume conservation [Fig. 1(b)]. Because of fluid trap-
ping in single tubes, the invading fluid flows in separate
strands that cannot coalesce. We note that the definition
in Fig. 1(b) can be easily generalized to 3D [18], since
increasing the coordination number of the lattice does not
change the trapping rule. Therefore, we expect loopless
patterns to develop in 3D lattices and our arguments that
we present below should apply there too. We also note
that trapping of wetting fluid is more difficult in real
porous media due to a more complex topology of pores
and throats there. Loopless IP patterns have earlier been
observed in Refs. [16,19,20].

From Fig. 1(a) we may separate the displacement pat-
tern into two parts: one consisting of the frontal region
continuously covering new tubes, and the other consisting
of the more static structure behind the front. The frontal
region is supplied by nonwetting fluid through strands con-
necting the frontal region to the inlet. When the strands
approach the frontal region they are more likely to split.
Since we are dealing with a square lattice, a splitting strand
may create either two or three new strands. As the strands
proceed farther into the frontal region they split again and
again and eventually they cover the frontal region com-
pletely [see Fig. 1(a)].

On IP patterns without loops [16,18,20] the length l
of the minimum path between two points separated an
Euclidean distance R scales like l ~ RDs where Ds is the
fractal dimension of the shortest path. We assume that the
displacement pattern of the frontal region for length less
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than the correlation length (in our case ws) is statistically
equal to IP patterns in [16]. Therefore, the length of a
strand in the frontal region is proportional to DhDs when
Dh is less than ws. If we assume that on the average every
tube in the lattice has the same mobility (kij�mij), this
causes the fluid pressure within a single strand to drop
like DhDs as long as the strand does not split. When the
strand splits volume conservation causes the volume fluxes
through the new strands to be less than the flux in the strand
before it splits. Hence, following a path where strands split
will cause the pressure to drop as Dhk where k # Ds.

From the above arguments we conclude that the pressure
drop DPnw , in the nonwetting phase of the frontal region
(that is the strands), should scale as DPnw ~ Dhk where
k # Ds. In 2D two different values for Ds have been
reported: Ds � 1.22 [18,20] and Ds � 1.14 [16]. Both
values are consistent with our simulations finding k �
1.0 6 0.1.

The evidence that k � 1.0 may influence the scaling of
ws as a function of Ca. At low Ca simulations show that
DP̂c ~ CaDh1.0 [21]. Here DP̂c denotes the capillary
pressure difference when the front is stationary. That
means, DP̂c excludes situations where nonwetting fluid
rapidly invades new tubes due to local instabilities. At suf-
ficiently low Ca the displacement can be mapped to perco-
lation giving DP̂c ~ f 2 fc ~ j21�n [8,15,17]. Here f
is the occupation probability of the bonds, fc is the perco-
lation threshold, and j ~ ws is the correlation length. By
combining the above relations, we obtain ws ~ C2a

a where
a � n��1 1 nk�. In 2D n � 4�3 and inserting k � 1.0
gives a � 0.57. At high Ca we expect a crossover to an-
other type of behavior since it is not clear if the mapping to
percolation [8,15,17] is valid there. We note that Wilkin-
son’s result [8] gives a � 0.38 in 2D.

In summary, we conclude that DPc ~ Dhk where our
simulations give k � 1.0 6 0.1. By describing the dis-
placement structure in terms of loopless strands [16,20]
we have argued that k # Ds, where Ds is the fractal di-
mension of the shortest path between two points on IP pat-
terns without loops. In 2D two values of Ds have been
reported (1.14 [16] and 1.22 [18,20]) and both are consis-
tent with our numerical result k � 1.0. We conclude that
earlier suggested theories [8–11] are not compatible in sit-
uations where a loopless pattern with nonwetting strands
dominates the displacement. We have also shown that
a in ws ~ C2a

a may be influenced by the evidence that
k # Ds. Work is in progress to investigate our arguments
in 3D and the effect of loops on k.
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