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Improved Result for Helium 23S1 Ionization Energy
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A complete calculation of relativistic and quantum electrodynamic effects to order ma6 on the energy
of the 23S1 state in helium is presented. The result, beyond the previously known radiative corrections,
amounts to 23.00�1� MHz, and significantly reduces the theoretical uncertainty. The improved theoreti-
cal predictions are compared to the best available experimental result for the 23S1 state.
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The helium atom is one of the simplest systems in which
quantum electrodynamics (QED) can be studied with high
precision [1]. The presence of the electron-electron inter-
action is an essential ingredient in the comparison of he-
lium to hydrogenic systems and brings QED calculations to
the next level of complexity. While the numerical solution
of the Schrödinger equation can be obtained with precision
far beyond experimental accuracy, relativistic and quantum
electrodynamics effects are known with much less preci-
sion. A series of measurements involving the triplet 23S1
state, in particular, those by Shiner et al. [2], by the Flo-
rence group [3], and by the Paris group [4], have stimulated
advances in the theory of bound state quantum electrody-
namics. Recently, the so-called Bethe log, a mean ex-
citation energy that forms part of the leading radiative
correction, has been precisely calculated in [5–7] for low
lying states of helium. In this paper, we present the com-
plete result for the next to leading quantum electrodynam-
ics effects on the 23S1 ionization energy. It is achieved by
the calculation of matrix elements of effective operators
in the appropriate basis set of functions. We first present
these effective operators and rewrite them in a form suit-
able for numerical calculations. Next, we explain numeri-
cal methods and present results for matrix elements. Brief
concluding remarks with the prospects of further QED tests
are left to the very end.

The key idea of the effective Hamiltonian approach for
the calculation of bound state energies is the replacement
of the Hamiltonian of the full quantum electrodynamics
with a simplified Hamiltonian Heff which acts only in the
subspace of two-particle states with all momenta being of
the order of the inverse of the size of the bound state [8].
This new simplified Hamiltonian depends on an artificial
parameter l to keep its matrix element finite. The particu-
lar form of this regularization does not play a role, since all
divergences will be canceled out algebraically, and there-
fore we will not write it explicitly. Heff is obtained by
an expansion of the resolvent in the electron-nucleus and
electron-electron interactions up to third order and by an
expansion in momenta. It has the general form

Heff � H0 1 H�4� 1 H�5� 1 H�6�, (1)

where H0 is a nonrelativistic Hamiltonian for helium in the
nonrecoil limit
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and r � r1 2 r2. H�4� is the leading relativistic Breit
Hamiltonian and H�5�, H�6� are the higher order corrections
in ma5 and ma6 orders, respectively. The correction to the
energy in order ma6 can be written as
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where the prime in the denominator means the exclusion
of the f state in the operator inversion. It should be men-
tioned that for the helium fine structure splitting this ex-
pression has been derived many years ago in the traditional
(Bethe-Salpeter) approach by Douglass and Kroll [9].

The Breit Hamiltonian H�4�, neglecting terms propor-
tional to d3�r�, which vanish for triplet states, is, in atomic
units,

H�4� � HA 1 HB 1 HC 1 HD , (4)
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The corresponding correction to the energy at order
ma6 is
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, (9)
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for I � A, B, C, D. The expression for H�6� is much more
complex. It consists of electron-nucleus terms, electron-
electron terms, and the radiative correction,

H�6� � He-n�1� 1 He-n�2� 1 HV 1 HRC1 1 HRC2 ,
(10)
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These effective operators have been derived in [8]. Here
we put s1s2 � 1, which holds for triplet states. Moreover,
they were transformed here to a form which is more suited
for numerical calculations of matrix elements. Namely,
we expressed them in terms of a few basic operators
containing fewer derivatives. A further transformation is
required for EA and He-n since both of these terms are
divergent, but in such a way that this divergence cancels
out in the sum. This cancellation of properly regularized
singularities was demonstrated in [8]. Here, we slightly
simplify that method and remove divergences as follows.
Let us define new Hamiltonians H 0

A and H 0
e-n with
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The correction to the energy,
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is finite for separate terms and equal to the original expres-
sion EA 1 �He-n�1� 1 He-n�2��.

An analogous numerical calculation for helium fine
structure has already been performed by several groups,
the most recent one by Yan and Drake [10]. We used here
a completely different basis set, similar to the one used
by Frolov [11] and Korobov et al. [5]. In this approach
the helium wave function is expanded in a basis set of
exponential functions of the form

f�r1, r2, r� �
X

i

yi�e2air12bi r22gir 6 �r1 $ r2�� ,

(18)

where ai , bi , and gi are real and chosen in a uniform and
random way with the following conditions:

A1 , ai , A2, bi 1 gi . e , (19)

B1 , bi , B2, ai 1 gi . e , (20)

C1 , gi , C2, ai 1 bi . e . (21)

The parameters Ai , Bi , Ci , and e are determined by mini-
mization of the energy of the state of interest. The condi-
tion e . 0 is necessary for the normalizability of the wave
function. In order to obtain a more precise wave function,
we subdivided these sections, for example, �A1 · · · A2�, into
two subsections �A1 · · · A2 · · · A3� with an equal number of
randomly chosen ai terms. The coefficients yi in Eq. (18)
form a vector y which is a solution of the generalized
eigenvalue problem,

Hy � ENy , (22)

where H is a matrix of the Hamiltonian in this basic set,
N is a normalization matrix, and E is an eigenvalue, the
energy of the state corresponding to y. For the solution of
the eigenvalue problem with a typical value of N � 600,
we use Lapack libraries in the quadruple precision. As
a result for the nonrelativistic energy of the helium 23S1
state, we got

E�23S1� � 22.175 229 378 236 791 2 . (23)

This value agrees up to all digits with the still more ac-
curate result of Drake and Yan [12]. The calculation of
all matrix elements can be performed with the use of one
formula:
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The result with any additional ri in the numerator can be obtained by differentiation with respect to the corresponding
parameter a, b, or g. Any additional ri in the denominator can be obtained by integration with respect to its associated
parameter. This leads to the appearance of logarithmic and dilogarithmic functions:
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All matrix elements involved in the ma6 correction can
be expressed in terms of rational, logarithmic, and diloga-
rithmic functions, as above. It is the power of this basis
set that matrix elements could be easily calculated alge-
braically. Although the binding energy is highly accurate,
the precision of matrix elements is not so. One reason
is due to the variational method, another one being asso-
ciated to high singularity of operators in H�6�. With the
exception of V4A, the term in braces in Eq. (12), all matrix
elements in HV were calculated as described above. V4A

was too complicated for the analytic calculation of matrix
element. In fact, the analytic expression was so large and
singular that we were worried about its numerical stability.
Instead, we calculated the ri integrals numerically using
the Gaussian method. Even more numerically involved is
the calculation of second order corrections. The spin alge-
bra in the calculation of the matrix element in EI in Eq. (9)
is simplified with the help of
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The inversion of the operator E0 2 H0 in the expression
for EB and EC is performed in a basis set of even functions
with l � 1 of the form
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To find the optimized values of parameters Ai , Bi , and Ci

necessary for generation of f, we minimize with respect to
them the corresponding correction to energy EI . Results
of these calculations [13] are presented in Table I. The
most intensive numerical calculation was required for E0

A
for the following two reasons. It is not a simple inversion
of E0 2 H0, but an inversion with the exclusion of the 23S
state, where it is equal to 0. Therefore, such an inversion
requires full diagonalization of E0 2 H0, which is a time
consuming process. The next reason was the large mag-
nitude of second order correction and H 0

e-n. However, the
sum with the subtracted value of the Dirac energy of He1

is fairly small, as given in Table I. The estimated numeri-
cal error of E0

A is the dominant theoretical uncertainty of
this calculation. The numerical result for the matrix ele-
ment of H 0

e-n, although equally large, was obtained with
much higher precision than this second order term.

The summary of numerical results for ma6 contribu-
tions is presented in Table I. The new term calculated here,
beyond the previously known radiative corrections, is

S � 2ma6 0.160 80�50� � 23.00�1� MHz . (30)
This result is surprisingly small, but brings theoretical
predictions closer to the experimental value. Other con-
tributions to helium ionization energy have already been
calculated and are presented in Table II. Therefore, we
are now at the position to give an improved value for the
helium 23S1 ionization energy. We base our analysis on a
recent work of Drake and Martin [1]. The nonrelativistic

TABLE I. Numerical results for ma6 contributions to 23S1
ionization energy.

Contribution ma6

EV 0.16754(5)
E0

A 2 Z6�16 20.30480�50�
EB 20.01860�2�
EC 20.00111
ED 20.00383

S 20.16080�50�
ERC 2 ERC�He1� 3.65773

Stot 3.49693(50)
4563
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TABLE II. Summary of contributions to 23S1 ionization
energy.

Contribution Value in MHz

EN 21 152 846 800.14
E�5� 3998.65
E�6� 65.24(0.01)
E�7� 25.31�1.00�
2Etheor 21 152 842 741.56�1.00�
2Eexpt 21 152 842 742.87�0.06�

energies of helium low lying states are known with pre-
cision highly exceeding any other contribution. The rela-
tivistic correction of relative order a2, which involves the
calculation of the matrix element of the Breit Hamiltonian,
is also known very accurately. The complete non-QED
value for ionization energy, including the effect of the finite
size of the nucleus, is denoted by EN in Table II. The lead-
ing QED contribution of order a3 includes the so-called
Bethe logarithms, the average excitation energy. This term
has been recently calculated with very high precision by
Korobov [5] for singlet S states, and Baker et al. [6] for
the triplet S state, as well as singlet S states. The value of
E�5� in Table II includes also very recently calculated small
recoil corrections [14]. It was the E�6� correction which
limited the precision of theoretical predictions of He ion-
ization energies. It includes radiative correction that scales
exactly with Dirac d functions and the term S calculated
here. At the current precision level it is necessary to also
include higher order QED effects, which are known to be
large in hydrogenic atoms. We promote the hydrogenic
value for the ma7 contribution to helium assuming that it
is proportional to d3�r1� 1 d3�r2�, as was done in [1]. Al-
though this correction is certainly not given by the Dirac
delta function, based on the behavior of lower order results
one hopes to incorporate in this way the largest contribu-
tion. We estimate the remaining unknown contribution to
be of the order of 1 MHz, and this is now the dominant
source of theoretical uncertainty provided the calculation
presented in this paper is correct. The numerical uncer-
tainties are much smaller, of the order of 10 kHz, mainly
due to E0

A.
From the most precise measurement 23S1 2 33D1 by

the Paris group [4], one gets 23S1 ionization energy by
subtraction of the theoretically well-known value for the
33D1 state, Eexpt in Table II. It agrees with the theoretical
value, a difference is 1.3(1.0) MHz: we emphasize that the
theoretical uncertainty is chosen quite arbitrarily. It is also
important to stress at this point that the numerical calcu-
lation of the ma6 contribution as presented in this paper,
and the former derivation of corresponding operators [8],
requires an independent confirmation: a possible mistake,
4564
difficult to avoid in such an involved analytic derivation
and numerical calculations, could easily have been made.
Further improvements in QED tests on the helium 23S1
state would require the complete calculation of the ma7

term, which, if not impossible, is a quite difficult task. A
similar set of ma6 operators has already been derived for
singlet S states [15]: it therefore should be possible in the
near future to obtain an improved ground state Lamb shift
and compare with the known experimental value. Another
project is the helium fine structure splitting. Here the tar-
get is the ma7 contribution. The author has unsuccessfully
attempted to derive a complete set of operators. However,
an approximate approach, in which a selection of the most
numerically important but algebraically simple operators
is made, may allow the calculation of the bulk of the fine
structure at this order. This would lead to an uncertainty
in the fine structure splitting below 1 kHz, i.e., below the
experimental error.
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