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Fine Structure in the Decay of Deformed Proton Emitters: Nonadiabatic Approach
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The coupled-channel Schrödinger equation with outgoing wave boundary conditions is employed to
study the fine structure seen in the proton decay of deformed even-N , odd-Z rare earth nuclei 131Eu and
141Ho. Experimental lifetimes and proton-decay branching ratios are reproduced. Variations with the
standard adiabatic theory are discussed.
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Proton radioactivity has proven to be a very powerful
tool to observe neutron-deficient nuclei and study their
structure. Theoretically, proton radioactivity is an ex-
cellent example of a simple three-dimensional quantum-
mechanical tunneling problem. Indeed, in first order, it
involves only a single proton moving through the Coulomb
barrier of the daughter nucleus. In reality, the process
of proton emission is more complicated since the perfect
separation of the nuclear many-body wave function into
that of the proton and the daughter cannot be made, and, in
addition, the decay is greatly influenced by nuclear struc-
ture effects such as configuration mixing. In spite of this,
the one-body picture works surprisingly well; it enables us
to determine the angular momentum content of a resonance
and the associated spectroscopic factor in many cases [1,2].
Experimental and theoretical investigations of proton emit-
ters are opening up a wealth of exciting physics associated
with the coupling between bound states and extremely nar-
row resonances in the region of very low single-particle
level density. One particular example of such a coupling,
due to the Coriolis interaction, is discussed in this work.

The last two years have seen an explosive number of
exciting discoveries in this field, including new ground-
state proton emitters and proton-decaying excited states
[3–6], and the first evidence of fine structure in proton
decay [7]. The main focus of recent investigations has
been on well-deformed systems which exhibit collective
rotational motion; consequently, they are splendid labora-
tories for the interplay between proton emission and angu-
lar momentum.

From a theoretical viewpoint, the understanding of pro-
ton emitters is a test of how well one can describe very
narrow resonances. For spherical nuclei, there are many
available theoretical methods, most of which give very
similar and accurate results [8]. There have been several
theoretical attempts to describe deformed proton emitters.
These approaches can be divided into three groups. The
first family of calculations [3,7,9] is based on the reaction-
theoretical framework of Kadmenskiı̆ and collaborators
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[10]. The second group is based on the theory of Gamow
(resonant) states [5,11,12]. Finally, calculations based on
the time-dependent Schrödinger equation have recently
become available [13]. All of these papers assume the
strong-coupling approximation. That is, the daughter nu-
cleus is considered to be a perfect rotor with an infinitely
large moment of inertia. Consequently, all the members
of the ground-state rotational band are degenerate and the
Coriolis coupling is ignored. Our work is the first attempt
to go beyond these simplified assumptions in the descrip-
tion of proton radioactivity.

Our technique is based on the theory of Gamow states.
More precisely, we solve the coupled-channel Schrödinger
equation describing the motion of the proton in the de-
formed average potential of a core (a daughter nucleus).
It is assumed that the proton wave function is regular at
the origin and asymptotes to a purely outgoing Coulomb
wave. These boundary conditions result in complex-
energy eigenstates [14]. For resonant states, the real part
of the energy, E0 � Re�E�, can be interpreted as the reso-
nance’s energy, while the imaginary part is proportional
to the resonance’s width, G � 22 Im�E�.

Let us consider the Hamiltonian of the daughter-plus-
proton system,

H � Hd 1 Hp 1 V , (1)

where Hd is the Hamiltonian of the daughter nucleus, Hp

is the proton Hamiltonian, and V represents the proton-
daughter interaction. The total wave function, C, of the
parent nucleus can be written in the weak-coupling form:

CJM � r21
X

Jdlpjp

uJ
Jdlpjp

�r� �Ylpjp ≠ FJd �JM . (2)

In (2), uJ
a [a � �Jdlpjp� labels the channel quantum num-

bers] is the cluster radial function representing the rela-
tive radial motion of the proton and the daughter nucleus,
Yjplpmp is the orbital-spin wave function of the proton, and
FJdMd is the wave function of the daughter nucleus. By
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definition, one has

HdFJdMd � EJd FJdMd . (3)

In practice, the energies EJd are taken from experiment
or, if the data are not available, they are modeled theo-
retically. Inserting (2) into the Schrödinger equation and
integrating over all coordinates except the radial variable
r , one obtains the set of coupled equations for the cluster
functions [9,15]:∑

2
h̄2

2m

d2

dr2 1
h̄2lp�lp 1 1�

2mr2 1 Va�r� 2 QJd

∏
3

uJ
a�r� 1

X
a0

VJ
a,a0�r�uJ

a0�r� � 0 .

(4)

In Eq. (4), Va represents the average spherical potential of
the proton in the state a, VJ

a,a0 is the off-diagonal coupling
term, and QJd is the energy of the relative motion of the
proton and daughter nucleus in the state Jd . One obviously
has QJd � Q0 2 EJd , where Q0 is the Qp value for the
decay to the Jp

d � 01 ground state.
The method of coupled channels described above

has several advantages over the commonly used strong
coupling formalism. First, excitations in the core may be
included in a straightforward manner. This enables us to
study the proton decay from the rotational bands of the
parent nucleus to various rotational states of the daugh-
ter. Furthermore, since the formalism is based on the
laboratory-system description [Hamiltonian (1) is rota-
tionally invariant and the wave function C conserves an-
gular momentum], the Coriolis coupling is automatically
included.

The coupled equations (4) are solved in the complex
energy plane. Asymptotically, the cluster wave function
uJ

Jdjplp
behaves as a purely outgoing Coulomb wave

Glp �kJd r� 1 iFlp �kJd r�, with kJd �
p

2mQJd �h̄. In this
work, we assume that the average single-particle potential
is approximated by the sum of a Woods-Saxon (WS)
potential, spin-orbit term, and the Coulomb potential.
The axially deformed WS potential is defined according
to Ref. [16]. We employ the Chepurnov parametrization
[17]; it gives good agreement with proton single-particle
energy levels as given in Ref. [18]. This parametrization
provides a reasonable compromise between the Becchetti-
Greenlees parameter set [19] (excellent for the description
of reaction aspects but slightly displacing the h11�2, g9�2,
and s1�2 proton shells) and the universal parameter set
[20] (excellent for the description of structure properties
of deformed rare earth nuclei [18] but having too large a
radius to give a quantitative description of the tunneling
rate [8]).

Since the resonance energy cannot be predicted with suf-
ficient accuracy, following Refs. [5,8], the depth of the WS
potential is adjusted to give the experimental Q0 value. The
deformed part of the spin-orbit interaction is neglected; we
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do not expect this to have a significant effect on the results
[21]. In general, variation of the optical model parameters
within the range of their uncertainties affects the predicted
half-lives by not more than a factor of about 3 [8].

The off-diagonal coupling in (4) appears thanks to the
nonspherical parts of WS and Coulomb potentials. The
exact form of VJ

a,a0 can be found in Ref. [15], Eq. (40), and
Ref. [9], Eq. (32). Here, the WS potential is decomposed
into spherical multipoles to order 12.

We ensure that enough daughter states are considered
for proper convergence. In practice, we must include some
energetically forbidden states. These states do not directly
contribute to the width, but do affect the solution. Fur-
thermore, we assume that the daughter nucleus is left in
its ground-state rotational band and the deformation is un-
changed during the decay process. To normalize the clus-
ter radial functions, we use a method [22] which became
known as “exterior complex scaling” [23].

The description of very narrow proton resonances is a
challenging task due to dramatically different energy scales
of E0 and G. Indeed, while the energies of single-proton
resonances are of the order of 1 MeV, their widths can be
as small as 10222 MeV. This calls for unprecedented nu-
merical accuracy. In this work, we apply the piecewise per-
turbation method [24] generalized to the coupled-channel
case. The calculations are performed in extended preci-
sion arithmetic. The details of the numerical procedure
employed are given in Ref. [25]. As a check on the calcu-
lated widths, we also calculate the width from the probabil-
ity current expression [14] G �

P
a Ga , where the channel

width is

GJ
a � i

h̄2

2m

uJ0�
a �r�uJ

a�r� 2 uJ0
a �r�uJ�

a �r�P
a0

Rr
0 ju

J
a0�r 0�j2 dr 0

. (5)

The agreement between the two methods is always better
than 0.1%. It should be noted that G is independent of r .
For narrow and isolated resonances, one can approximate
the exact Eq. (5) by the R-matrix expression, as was done
in Ref. [12].

One limit of Eq. (4) is the degenerate case in which
QJd � Qp for all values of Jd . This is the adiabatic ap-
proximation discussed in Refs. [15,26]. It is easy to check
that in the adiabatic limit the set of new wave functions

uJKjplp �
p

2 �21�K1J
X
Jd

C
Jd0
jpK ,J2KuJ

Jdlpjp
, (6)

with jKj # jp , is also a solution of (4) with an eigen-
value Q0. For V � K � J, the wave function CV �P

jplp

uVVjp lp �r�
r YlpjpV represents the intrinsic single-

particle Nilsson wave function with the angular mo-
mentum projection on the symmetry axis V. As seen
from Eq. (6), the strongly coupled intrinsic state contains
contributions from all the cluster wave functions corre-
sponding to different core states. Another property of the
adiabatic limit is the existence of solutions with J $ V.
Since there is no dynamic coupling between the angular
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momentum of the proton and that of the daughter nucleus
[15], there exist infinitely many solutions obtained by
combining jp and Jd . Since the core states are degenerate,
all the solutions with J $ V are degenerate as well.

Let us discuss the results of our calculations. Since
for the very proton-rich nuclei considered in this work
practically nothing is known about their spectra, we pa-
rametrize the ground-state band of the daughter nucleus as
EJ � kJ�J 1 1� and fix k to the experimental value of
E21 (or to the value taken from systematic trends). In the
limit of infinite moment of inertia (k ! 0), one reaches
the adiabatic limit.

The presence of a finite moment of inertia in the daugh-
ter nucleus gives rise to rotational bands in the parent nu-
cleus built upon the J � V band head. Figure 1 shows
the calculated rotational band in 131Eu built upon the J �
3�21 level (associated with the [411]3�2 Nilsson orbital).
For the energy of the 21 state in the daughter nucleus
130Sm we took the experimental value [7]. The J � 5�2
and 7�2 levels follow very closely the expected J�J 1

1� spacing; the small deviations are due to the Coriolis
coupling.

The partial width corresponding to the J ! Jd decay,
G�J ! Jd� �

P
jplp

G
J
Jdjplp

, determines proton branching
ratios (b.r.) It is seen that the proton-emission lifetimes
and b.r. change with J. Of course, at the low energies
shown in Fig. 1, rotational states decay by emitting gamma
radiation (Gg ¿ Gp). The 3�21 ! 01 decay is given by
the very small d3�2 component. The large branching to the
21 state is due to the dominant d5�2 partial wave. (This
also explains the fact that the 5�21 level decays predomi-
nantly to the 01 ground state.) It is worth noting that the
s1�2 component, not allowed in the adiabatic approach due
to K conservation, also contributes to the 3�21 ! 21 tran-
sition. Although K is not conserved in the nonadiabatic ap-
proach, one can decompose the wave function into states
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FIG. 1. Proton emission from the [411]3�2 rotational band in
131Eu calculated in the nonadiabatic model. Half-lives for proton
emission and branching ratios are indicated.
(6) with definite K . In most cases, we find that one K
component dominates the wave function. Consequently,
the Nilsson labeling convention can still be used.

Transitions to excited daughter states, K ! Jd , may
also be approximated in the strong coupling framework
[7,9]. In this case, the angular momentum conservation
is guaranteed by the presence of the geometric factor
�CJd0

KK ,K2K�2. In addition, the Qp value is adjusted to QJd .
As shown previously in Ref. [5], at large deformations

our calculations show a very small dependence on b2 and
b4. This is because the spherical decomposition of the cor-
responding Nilsson orbitals varies little in this regime, and
there are no crossings between the levels of interest. The
uncertainty due to the b2 value is usually much smaller
than the experimental uncertainty in the proton energy.
Table I shows predicted half-lives and b.r. for 131Eu and
141Ho. For 131Eu, we take b2 � 0.32 and, for 141Ho,
b2 � 0.29 and b4 � 20.06 [5]. Spectroscopic factors
have been estimated in the independent-quasiparticle pic-
ture. Note that the 1��V 1 1�2� coefficient multiplying
the BCS values of u2, assumed in Ref. [5], is no longer
present. Considering both the half-life and b.r., the ground
state of 131Eu is consistent with the [411]3�2 assignment
proposed in Ref. [7]. (Since the uncertainties of the optical
potential may give rise a factor of 2–3 in the lifetime, the
[413]5�2 assignment [12] cannot be totally excluded. Our
results, however, strongly favor the [411]3�2 state.) The
very small b.r. for the [413]5�2 orbital results from the fact
that both the 5�21 ! 01 and 5�21 ! 21 transitions go
via the d5�2 component which constitutes about 4% of the
wave function. On the other hand, for the yet-unobserved
[532]5�2 state, the 5�22 ! 01 transition goes via the tiny
(0.1%) f5�2 wave, while the 5�22 ! 21 decay is domi-
nated by the f7�2 component (17%) and the K-forbidden
p3�2 wave, which appears due to the Coriolis coupling.
This results in the huge branching predicted for this state.

For 141Ho, based on calculated half-lives, we can as-
sign the �523�7�2 level to the ground state and �411�1�2
to the excited state. We note that these assignments are
identical to our previous assignment in Ref. [5], although

TABLE I. Half-lives and branching ratios (b.r.) to the J1
d �

21 state for deformed proton resonances in 131Eu and 141Ho cal-
culated in the nonadiabatic (nad) and adiabatic (ad) formalism.
The experimental values (shown in boldface) are taken from
Refs. [5,7]. The energy of the 21 state in 130Sm and 140Dy was
assumed to be 120 and 160 keV, respectively.

Orbital u2 t1�2 b.r. (nad) b.r. (ad)

[411]3�2 0.71 34.0 ms 39% 37%
131Eu [413]5�2 0.52 184 ms 7% 2%

[532]5�2 0.48 3.90 s 52% 38%
17.8���19��� ms 24���5���%

141Ho [523]7�2 0.84 19.1 ms 6% 3%
3.9���5��� ms

141mHo [411]1�2 0.70 3.3 ms 1% 1%
8���3��� ms
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FIG. 2. Predicted branching ratio for the proton transition from
Jp � 7�22 and 1�21 states in 141Ho to the 21 state in 140Dy as
a function of E21 . The expected value of E21 is around 160 keV.

we are now using the nonadiabatic formalism and have
changed the optical model parameters. These assignments
also agree with those proposed in Refs. [3,12].

For 140Dy, the energy of the 21 state is experimentally
unknown, but it can be estimated from systematic trends.
For instance, according to the NpNn scheme, one obtains
the value E21 � 160 keV [27], which was adopted in the
calculations displayed in Table I. Figure 2 shows the ex-
pected b.r. to the 21 state as a function of E21 for both
proton-emitting states in 141Ho. For the [523]7�2 ground
state, the predicted b.r. is still of the order of a few per-
cent even at relatively large values of E21 , and this of-
fers good prospects for its experimental observation. On
the other hand, the b.r. for the isomeric [411]1�2 state is
lower by an order of magnitude. In 131Eu the experimen-
tal uncertainty in the Qp value leads to an uncertainty of
130%�222% for all three levels. The branching ratios
vary by less than 3%.

In conclusion, we applied a nonadiabatic formalism,
based on the coupled-channel Schrödinger equation with
outgoing wave boundary conditions, to describe very nar-
row proton resonances in deformed nuclei. The nonadia-
batic model takes into account the fact that the daughter
nucleus has a finite moment of inertia. Our calculations are
consistent with the experimental data for the best deformed
proton emitters known so far: 131Eu and 141Ho. As shown
in Table I, the adiabatic approximation usually gives rise to
an underestimation of branching ratios. According to our
predictions, there is a good chance to study experimentally
the fine structure in the proton decay of 141Ho.
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[16] S. Ćwiok, J. Dudek, W. Nazarewicz, J. Skalski, and

T. Werner, Comput. Phys. Commun. 46, 379 (1987).
[17] V. A. Chepurnov, Yad. Fiz. 6, 955 (1967); Sov. J. Nucl.

Phys. 7, 715 (1968).
[18] W. Nazarewicz, M. A. Riley, and J. D. Garrett, Nucl. Phys.

A512, 61 (1990).
[19] F. D. Becchetti, Jr. and G. W. Greenlees, Phys. Rev. 182,

1190 (1969).
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