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Method for Extracting the Quark Mixing Parameter cosa via B6 ! p6e1e2
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We show that it is possible to extract the weak mixing angle a via a measurement of the rate for
B6 ! p6e1e2. The sensitivity to cosa results from the interference between the long and short dis-
tance contributions. The short distance contribution is given in terms of semileptonic form factors. The
long distance contribution can be calculated using Ward identities and a short distance operator product
expansion if the invariant mass of the lepton pair, q2, is larger than L

2
QCD . For q2 $ 2 GeV2 the branch-

ing fraction is approximately 1 3 1028jVtd�0.008j2. The shape of dG�dq2 is very sensitive to the value
of cosa at small values of q2 and varies by 50% when 21 , cosa , 1 at q2 � 2 GeV2.

PACS numbers: 12.15.Hh, 11.30.Er, 13.20.He
Great effort is presently being expended in attempting
to understand the origin of CP violation. It is hoped that
in the next generation of experiments we will be able to
determine all the parameters in the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. However, the extraction of these
parameters is, in general, hindered by our inability to
perform first principle calculations of rates due to the non-
perturbative nature of the long distance QCD effects. A
particularly nettlesome extraction is that of the angle a

in the unitarity triangle. The standard proposal for the
extraction of a from B ! pp is hindered by so called
penguin pollution, which can be overcome only through
a cumbersome SU�3� analysis. Here we propose to ex-
tract this angle via a measurement of the rate for the
rare decay B ! pe1e2. (It is also possible to use the
mode B ! re1e2, which will be discussed in a sepa-
rate publication [1].) It is usually assumed that the rate
for this process is dominated by the short distance transi-
tion b ! de1e2 except when the invariant e1e2 mass,
q2 � �pe2 1 pe1�2, is of the order of charmonium reso-
nances where long distance contributions are important
(here and below by short distance transition we mean con-
tributions to the amplitude that are effectively local at dis-
tances larger than the electroweak scale 1�MW ). However,
there is a long distance contribution, which arises through
weak annihilation diagrams, like the one in Fig. 1, which
can contribute significantly. The short distance amplitude
is proportional to VtdV

�
tb whereas the long distance annihi-

lation graph is proportional to VudV
�
ub . Thus, the interfer-

ence of these contributions leads to a rate which is sensitive
to the value for cosa where

a � arg

∑
2

VtdV
�
tb

VudV
�
ub

∏
. (1)

Even a crude measurement of cosa would be of value since
it would remove a twofold ambiguity in extractions of a

from sin2a. Naively, one would think that any hope of
extracting a in this way is doomed by the fact that long
distance contributions are notoriously intractable. How-
ever, in this paper we show that this weak annihilation can
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be calculated in an expansion in 1�mb and as when the
invariant mass of the electron pair q2 is larger than L

2
QCD .

Moreover, as will be seen below, the rate is independent of
the valence, as well as higher twist, wavefunctions of the
pion, thereby reducing the uncertainty in the calculation.

Let us naively estimate the relative importance of the
short distance amplitude and of the long distance weak
annihilation amplitude. The former must involve an elec-
troweak loop, so it carries a factor of 1�16p2, while the
latter should be suppressed by wave functions at the ori-
gin fBfp�M2

B, where fB and MB are the B-meson decay
constant and mass, respectively, and fp is the p-meson
decay constant. (At small q2 the short distance amplitude
is further suppressed by q2�M2

B.) In addition, the CKM
factors are different. So the ratio of the long distance to
short distance amplitudes is expected to be of the order
of jVub�Vtdj16p2fBfp�M2

B � 0.07. Here we have used
fB � 170 MeV, fp � 130 MeV, and jVub�Vtdj � 0.5.
Thus, weak annihilation can easily give a correction of

b d

uu

W

γ

FIG. 1. Weak annihilation diagram underlying the decays B !
re1e2 and B ! pe1e2. There are three other diagrams with
the photon emitted from any of the three light quarks. Photon
emission from the W -boson is suppressed by GF .
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10% to the rate, possibly larger. A more quantitative cal-
culation is well motivated.

Let us now undertake a systematic calculation of the
weak annihilation amplitude in B6 ! p6e1e2, which
will be the primary focus of this paper. The relevant effec-
tive Hamiltonian for the long distance, weak annihilation
contribution to the rate for B2 ! p2e1e2 is

H 0
eff �

4GFp
2
VubV

�
ud�c�m�MW �O 1 c0�m�MW �O0� ,

(2)

where

O � ūgnP2b d̄gnP2u , (3)

and

O0 � ūgnP2T
ab d̄gnP2T

au , (4)

P6 � �1 6 g5��2 and Ta are the generators of color
gauge symmetry. The dependence on the renormalization
point m of the short distance coefficients c and c0 cancels
the m dependence of operators, so matrix elements of the
effective Hamiltonian are m independent. At next to lead-
ing log order, using L

�5�
QCD � 225 MeV, the coefficients

at m � 5 GeV are [2] c � 1.02 and c0 � 20.34.
The B2 ! p2e1e2 decay rate is given by

dG

dq2dt
�

1

28p3M3
B

Ç
e
q2 �mh

m

Ç2
, (5)

where �m � ū�pe2�gmy�pe1� is the leptons’ electromag-
netic current, q � pB 1 pe2 and t � �pD 1 pe1 �2 �
�pB 2 pe2�2. A sum over final state lepton helicities is
implicit. The nonlocal contribution to the hadronic current
h is

hm � �pj
Z

d4x eiq?x T ��� jm
em�x�H 0

eff�0���� jB	 . (6)

The two body kinematics with an energetic massless final
state hadron is known to factorize [3] in the sense that soft
gluon exchange between initial and final state hadrons is
suppressed by 1�mb or as�mb�. This factorization results
from the fact that the energetic outgoing light quarks form a
small color singlet object which does not couple to leading
order in the ratio k�Eq (“color transparency” [4]), where
k is the soft gluon momentum and Eq is the energy of the
outgoing quarks which scales with mb provided q2 is not
close to q2

max � �MB 2 mp �2. Furthermore, by the same
reasoning, the color octet operator does not contribute to
leading order in k�Eq once the final state is projected
onto the color singlet channel. Notice that this is the sim-
plest example of Bjorkens’ color transparency argument,
since there is only one hadron in the final state. There
are no assumptions needed regarding the behavior of wave
functions.
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Returning now to our result we find that factorization
leads to

h�X�m � k
Z

d4xeiq?x��pjT ��� jm
em�x�jl�0���� j0	

1
2
fBp

l
B

1 �pj jl�0�j0	 �0jT ��� jm
em�x�Jl�0���� jB	� , (7)

where k � 2
p

2GF VubV
�
udc, jl � d̄glP2u, and

Jl � uglP2b.
The first line in Eq. (7) can be computed using an

isospin Ward identity. The B momentum acts as a deriva-
tive on the T -ordered product which then gives the matrix
element of a commutator. It makes a contribution to hm of
2ekfpfBp

m
B .

It is remarkable that this result is not sensitive to the in-
ternal structure of the pion. The first term in Eq. (7) may
be written using a lightcone OPE, as a weighted integral
over the pion valence wave function plus higher twist cor-
rections [5]. If one were to perform this calculation, one
would find that to all orders in as the Wilson coefficients
are independent of the momentum fraction carried by the
light quarks. The generality of our result allows one to see
immediately that in addition it is independent of all higher
twist wave functions as well.

The second line in Eq. (7) is also insensitive to the light-
cone wave function of the B meson, in that it can be com-
puted using a short distance OPE [6,7] and a heavy quark
expansion (HQET) for the b quark, provided q2 ¿ L

2
QCD .

To leading order we find

hm � 2
4
3ekfpfBp

m
B . (8)

The coefficient of the singlet operator (3) is a function of
renormalization point m. However, once we have matched
to the HQET the m dependence of the coefficient cancels
that of the decay constant of the B meson in the HQET.
This invariant combination is the physical decay constant
fB, or rather, the leading approximation to it in an expan-
sion in 1�mb .

As we will see, the sensitivity to cosa is greatest at small
q2 where the short distance contribution is suppressed due
the rapidly falling form factors. Thus we would like to be
able to trust our results to as low a value of q2 as possible.
If k denotes the momentum of the u quark in the B meson,
the OPE is a double expansion in qk�q2 � LQCDmb�q2

and k2�q2 � L
2
QCD�q2. The leading correction, of the or-

der of qk�q2 can be computed. The remaining corrections
are of order 20% for q2 
 3.5 GeV2 and can be computed
in terms of matrix elements of local operators. Including
the leading correction we find

hm � 2
4
3ekfpfBp

m
B �1 1

2
3L̄mb�q2� , (9)

where L̄ � MB 2 mb is the meson mass in HQET. A
recent extraction [8] gives L̄ 
 330 MeV.

We now combine the long and short distance contribu-
tions to the amplitude for B2 ! p2e1e2. At leading
order the short distance contribution to the amplitude is
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obtained from the effective Hamiltonian [9]. (The penguin
operators O3-O6 have small coefficients and we neglect
them. The gluonic magnetic moment operator, O8, does
not contribute to B ! p�� at this order.)

Heff �
4GFp

2
VtbV

�
td

X
j�7,9,10

Cj�m�Oj�m� , (10)

where

O7 �
e

16p2 mb�d̄smnP1b�Fmn , (11)

O9 �
e2

16p2 �d̄gmP2b� egme , (12)

O10 �
e2

16p2 �d̄gmP2b� egmg5e . (13)

At leading-log, with as�MZ� � 0.12 and mt � 175 GeV,
C7�mb� � 0.33 and C10�mb� � 5.3 [9]. At next to lead-
ing-log C9�mb� � 24.3 [10]. There are additional long
distance contributions from the operators O and O0, and
from the corresponding operators with the u quark replaced
by a c quark, in which a photon is emitted from a u- or
c-quark loop. These contributions can be incorporated into
a shift in C9,

C̃9 � C9 1 �c 1
4
3c

0�g�mc�mb , q̂2�

1
VubV

�
ud

VtbV
�
td

�c 1
4
3c

0� �g�mc�mb , q̂2� 2 g�0, q̂2�� ,

(14)

where q̂2 � q2�m2
b and the function g is defined in

Ref. [9]. The short distance amplitude is given in terms
of form factors, f6 and h, defined by

�p�p0�jd̄gmbjB�p�	 � �p 1 p0�mf1 1 �p 2 p0�mf2 ,

(15)

�p�p0� jd̄smnbjB�p�	 � 2ih�pnp0m 2 pmp0n� . (16)

Including the long distance contribution to the amplitude,
as calculated above, and neglecting the mass of the elec-
tron, the rate for B ! pe1e2 is
dG

dq2 � jVtbV
�
tdj

2 G
2
Fa2m3

B

3 3 29p5

�m2
B 2 q2�3

m6
B

3

∑
jC10f1j

21

Ç
C̃9f1 1 2mbC7h 2

16p2

3
VubV

�
ud

VtbV
�
td

c�mb�fpfB
q2

µ
1 1

2Lmb

3q2

∂ Ç2∏
. (17)
The contributions from the weak operator d̄gmbc̄gmc will
be poorly described by the function g when q2 corresponds
to the mass of a charmonium state, so we restrict our
analysis to q2 , m2

c .
We see that the interference effect is largest at smaller

values of q2 where the form factors are suppressed. A
part of the uncertainty in the extraction will depend on our
knowledge of the form factors. The form factors f1 and h
may be extracted from measurements of the semileptonic
B decays and B ! K�g, respectively. Alternatively, we
may use heavy quark symmetry and use the relation

h�q2� �
� f1�q2� 2 f2�q2��

2mb
1 O�1�mb� . (18)

Presently, there exist lattice QCD determinations at larger
values of q2, where there is little hadronic recoil.

Given that presently we do not know the form factors
away from largest values of q2, for illustration purposes
we will use the BK model (of Becirevic and Kaidalov [11])
which satisfies the unitarity sum rules bounds [12] and fits
lattice determinations [13] at large q2:

f
�BK�
1 �

N�1 2 b�
�1 2 q̃2� �1 2 bq̃2�

, f
�BK�
0 �

N�1 2 b�
1 2 gq̃2 ,

(19)

where f0 � q2

m2
B2m2

p

f2 1 f1, q̃2 � q2�M2
B� , and the pa-

rameters are b � 0.54, g � 0.8, N � 0.6, and MB� �
5.325 GeV. The value of g is fixed by the Callan-Treiman
relation f0�m2
B� � fB�fp . The BK model does not give

the form factor h. We calculate h using the heavy quark
spin symmetry relation (18).

In Fig. 2 we plot the rate of Eq. (17) as a fraction
of the total width G � t

21
B as a function of q2. We

have used the coefficients c, c0, and C9 at next to lead-
ing order, and the rest at leading log order. We have
restricted the plot to q2 $ 1.5 GeV2 for our approxima-
tions to remain valid, and to q2 # 8.5 GeV2 to avoid con-
tributions from charmonium resonances. For illustration
we have used jVubV

�
udj � 0.004, jVtbV

�
tdj � 0.008, and

fB � 0.17 GeV. The solid, dashed, and dotted lines cor-
respond to cosa � 0, 21, and 1, respectively, and the
shaded region represents an uncertainty 6�Lmb�q2�2 to
the correction in Eq. (9) plus a correction to factorization
of order L�Eq. The values used for jVubV

�
ud�VtbV

�
td j and

fB are uncertain. The long distance correction could be
even more pronounced if they happened to be larger.

The two limitations of our proposal are the size of the
branching fraction and the unknown form factors. We see
from (17) the branching fraction is sensitive to Vtd which
is presently constrained to be in the range 0.004–0.012.
Thus, the total branching fraction will vary between
1027 1029. Such branching ratios are most probably
out of the reach of e1e2 machines, but well within the
reach of hadronic machines given the mode. To extract
cosa we should look at the partially integrated rate for
1.5 # q2 # 8.5 GeV2 which will further reduce the rate
4547
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FIG. 2. Differential branching fraction, tB dG�dq2 for B !
pe1e2. The solid, dashed, and dotted lines correspond to
cosa � 0, 21, and 1, respectively. The shaded region shows
the uncertainty in our calculation (see text). For the short dis-
tance contribution the BK form factors of Ref. [11] have been
used.

by a factor of 2 or so. The accuracy with which we may
extract the CP violating parameters from B6 ! p6l1l2

is limited by how well we know the form factors. This
analysis is useful only if the form factors are known to an
accuracy significantly better than the size of the depen-
dence on cosa; that is, they have to be known much better
than 30%. Fortunately, it is expected that the relevant
form factors will be determined with percent accuracy
in the near future. Note that the overall normalization is
irrelevant for our analysis.

We have shown that the rate for B6 ! p6e1e2 is sen-
sitive to VubV

�
ud

VtbV
�
td

. If the magnitude of this ratio is known, then
the rate and particularly the shape of the spectrum depend
sensitively on cosa. Even a crude measurement of the
shape would almost certainly determine the sign of cosa
and remove a twofold ambiguity from sin2a. If the mag-
nitude is not known, then a measurement of the rate and
spectrum would constrain the unitarity triangle, e.g., a re-
4548
gion of the �r, h� plane [1]. The analysis requires knowl-
edge of decay form factors. Semileptonic decay spectra
will determine the combination jVubf1j. Such a measure-
ment can be incorporated in our analysis [1] and constrain
the unitarity triangle in a meaningful way even if separate
knowledge of jVubj and f1 is lacking.
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