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Superradiance Resonance Cavity Outside Rapidly Rotating Black Holes
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We discuss the late-time behavior of a dynamically perturbed Kerr black hole. We present analytic
results for near-extreme Kerr black holes that show that the large number of virtually undamped quasi-
normal modes that exist for nonzero values of the azimuthal eigenvalue m combine in such a way that
the field oscillates with an amplitude that decays as 1�t at late times. This prediction is verified using
numerical time evolutions of the Teukolsky equation. We argue that the observed behavior can be un-
derstood in terms of the presence of a “superradiance resonance cavity” immediately outside the black
hole, and discuss whether it may be relevant for astrophysical black holes.

PACS numbers: 04.70.Bw, 97.60.Lf
Our understanding of the generic response of a black
hole to dynamic perturbations is based on seminal work
from 30 years ago. Exponentially damped quasinormal-
mode (QNM) ringing was first observed in numerical
experiments by Vishveshwara [1], and the subsequent
late-time power-law falloff (that all perturbative fields
decay as t22l23 in the Schwarzschild geometry) was
discovered by Price [2]. A considerable body of work has
since established the importance of these two phenomena
for black-hole physics. We now know that most black-hole
signals are dominated by the slowest damped QNMs,
and many reliable methods for investigating these modes
have been developed [3]. The nature of the late-time tail
has also been studied in great detail. In particular, it has
been established that it is a generic effect independent of
the presence of an event horizon: The tail arises from
backscattering off of the weak gravitational potential in
far zone [4]. However, the fact that our understanding has
reached a mature level does not mean that no problems
remain in this field. A few years ago, the quasinormal
modes had been calculated also for Kerr black holes
[5], but there were no actual calculations demonstrating
the presence of power-law tails. Neither were there
any dynamical studies of rotating black holes. Several
recent developments have served to change this situation
and improve our understanding of dynamical rotating
black holes. Of particular relevance has been an effort
to develop a reliable framework for perturbative time
evolutions of Kerr black holes [6]. There have also been
recent efforts to analytically approximate the late-time
power-law tails for Kerr black holes [7,8]. Furthermore,
numerical relativity is now reaching a stage where fully
nonlinear studies of spinning black holes are feasible [9].

Kerr black-hole spectroscopy.—With the likely advent
of gravitational-wave astronomy only a few years away,
the onus is on theorists to provide detailed predictions
of the many scenarios that may lead to detectable gravi-
tational waves. In this context, the question of whether
we can realistically hope to do “black-hole spectroscopy”
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by detecting QNM signals and inverting them to infer the
black-hole mass and angular momentum is highly relevant
[10]. For slowly rotating black holes this presents a serious
challenge. Using standard results one can readily estimate
that the effective gravitational-wave amplitude for QNMs
is (cf. similar estimates for pulsating stars [11])

heff � 4.2 3 10224

µ
d

1026

∂1�2µ
M
MØ

∂ µ
15 Mpc

r

∂
, (1)

where d is the radiated energy as a fraction of the black-
hole mass M. The frequency of the radiation depends
on the black-hole mass as f � 12�MØ�M�kHz. Given
these relations, and recalling the estimated sensitivity of
the generation of detectors that is under construction, the
detection of QNM signals from slowly rotating solar-mass
black holes seems rather unlikely. It is, however, worth
pointing out that the situation will be more favorable for
low-frequency signals from supramassive black holes in
galactic nuclei and detection with LISA, the space-based
interferometric gravitational-wave antenna. It is also in-
teresting to note recent suggestions that “middle weight”
black holes, in the range �100 1000�MØ, may exist [12].
For such black holes the most important QNMs would ra-
diate at frequencies where the new generation of ground
based detectors reach their peak sensitivity. If there are in-
deed such black holes out there we may hope to take their
fingerprints in the future.

It has been suggested that QNM signals from rapidly ro-
tating black holes would be easier to detect. This belief is
based on the fact that some QNMs become very long lived
as a ! M (where 0 # a # M is the rotation parameter
of the black hole). In fact, mode calculations predict the
existence of an infinite set of essentially undamped modes
in the extreme Kerr limit [5]. The available investigations
into the detectability of QNM signals have focused on the
slow damping of these modes [10]. It has been shown
that the decreased damping of the modes may increase the
detectability considerably. However, these results have to
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be interpreted with some caution. What has been shown
is the (anticipated) effect that a slower damped mode is
easier to detect than a short-lived one, provided that the
modes are excited to a comparable amplitude. This is a
rather subtle issue that is closely related to the question of
whether it is easier to excite a slowly damped QNM than
a short-lived one. Intuitively, one might expect this not
to be the case. In similar physical situations the buildup
of energy in a long-lived resonant mode takes place on a
time scale similar to the eventual mode damping. Thus it
ought to be very difficult to excite a QNM that has char-
acteristic damping several times longer than the dynamical
time scale of the excitation process. This argument sug-
gests that the amplitude of each long-lived mode ought to
vanish in the limit a ! M when the e-folding time of the
mode increases dramatically [13]. In view of this it would
seem rather dubious to conclude that the detectability of a
QNM signal actually improves as a ! M. All may not be
lost, however, because even if each individual QNM has
an infinitesimal amplitude for rapidly spinning black holes
a large number of modes approach the same limiting fre-
quency as a ! M. These modes may interfere construc-
tively to give a considerable signal [14].

A surprising analytic result.—We want to assess the
change in “detectability” of the QNMs as a ! M, i.e.,
as we approach the extreme Kerr black hole case. As a
suitable model problem, we consider a massless scalar
field. As is well known, the equation that governs such a
field (which follows immediately from �F � 0) is similar
to the master equation for both electromagnetic and gravi-
tational perturbations of a rotating black hole that was first
derived by Teukolsky [15]. In the following, we briefly
outline our calculation and discuss the main results. A
more exhaustive discussion will be presented elsewhere
[16]. We use standard Boyer-Lindquist coordinates, and
approach the QNM problem in the frequency domain (ob-
tained via the integral transform used in [17]). Further-
more, we use the symmetry of the problem to separate the
dependence on the azimuthal angle w. In essence, we are
using a decomposition:
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It should be noted that the rotation of the black hole couples
the various l multipoles through the (frequency dependent)
spheroidal angular functions Slm [15].

In direct analogy with the Schwarzschild case [17] the
initial value problem for the scalar field can be solved using
a Green’s function constructed from solutions to the homo-
geneous radial differential equation for Rlm�v, r�. One of
the required solutions that satisfies the causal condition at
the event horizon, r1 � M 1

p
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v1 is the angular velocity of the event horizon, and r�

is the tortoise coordinate. It is useful to recall that a
monochromatic wave is superradiant if it has frequency
in the range 0 , v , mv1 [15].

A QNM is defined as a frequency vn at which Ain � 0.
Assuming that Ain � �v 2 vn�an close to v � vn we
can deduce (via the residue theorem) that the contribution
from each such mode to the evolution of the scalar field is
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where Ilm�vn, r� is a complicated expression that depends
on the details of the initial data (here assumed to have
support only far away from the black hole); cf. [16,17].

Let us now focus on the case of nearly extreme Kerr
black holes, i.e., on the case a � M. Then we can use
an approximation due to Teukolsky and Press [15] that
suggests that there will exist an infinite set of QNMs that
can be approximated by [14,18]
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where d, u, and w are positive constants (not to be con-
fused with the coordinates), and n is an integer labeling the
modes. It is easy to see that as n ! ` the modes become
virtually undamped, and that they are located close to the
upper limit of the superradiant frequency interval. That
such a set of long-lived QNMs will exist agrees with other
mode calculations [5,18]. Given the location of the QNMs
we can extend the calculation to deduce also the form of
the asymptotic amplitudes Aout and Ain (or rather, the co-
efficient an) for each vn. This enables us to approximate
the contribution of each long-lived QNM to the field via
(5). Doing this we find that the longest lived modes have
exponentially small amplitudes. Thus we predict that the
individual QNM will not in general be excited to a large
amplitude, in agreement with our intuitive expectations.
Expressing this result in terms of the effective amplitude of
a corresponding gravitational-wave QNM, we would have
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In other words, the assumption that the long-lived modes
may be easier to detect than (say) their short-lived coun-
terparts for slowly rotating black holes is cast in seri-
ous doubt. A recent, more detailed calculation of the
QNM excitation coefficients for a # M supports this con-
clusion [16].

This does not, however, mean that the long-lived QNMs
are without relevance. On the contrary, the fact that there
is a large number of such modes has a very interesting
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consequence. After combining all the long-lived modes
we find
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This is an unexpected result: It suggests that, when
summed, the contribution from the slowly damped QNMs
of a near extreme Kerr black hole corresponds to an os-
cillating signal whose magnitude falls off with time as a
power law. Furthermore, the decay of this signal is con-
siderably slower than the standard power-law tail. The
decay of 1�t should be compared to the tail results of,
for example, Ori and Barack [8] that suggest that F �
t2l2jmj232q, where q � 0 for even l 1 m and 1 for odd
l 1 m (derived only for nonextreme black holes). Hence,
we predict that the oscillating QNM tail will dominate
the late-time behavior of a perturbed near extreme Kerr
black hole.

We should point out that an oscillating 1�t tail can also
be deduced from the existence of an additional branch cut
in the Green’s function for an extreme Kerr black hole.
This branch cut arises because the effective potential in
the Teukolsky equation falls off as a power of r� near the
horizon in the extreme case (rather than exponentially as
in the case a # M). An estimate of the effect of this cut
leads to (8); see [16] for a detailed discussion. It is also
worth mentioning that oscillating power laws are known to
arise in standard scattering problems whenever the Green’s
function has higher order poles [19].

Numerical confirmation.—Our analytic result is obvi-
ously surprising. However, in view of the many approxi-
mations involved in the derivation of (8) considerable
caution is warranted, and a confirmation of the analytic
prediction is desirable. Fortunately, the recent effort to de-
velop a framework for doing perturbative time evolutions
for Kerr black holes [6] provides the means for testing our
result. Hence, we have performed a set of evolutions (for
various values of m) using the same scalar field code that
was used to study superradiance in a dynamical context
[6]. As initial data we have chosen a generic Gaussian
pulse originally located far away from the black hole.

Our numerical evolution results can be succinctly sum-
marized as follows (further details regarding, for example,
numerical convergence will be discussed elsewhere [16]):

(i) For extreme Kerr black holes (a � M) the numerical
evolutions show the predicted oscillating 1�t behavior for
all m fi 0; cf. Fig. 1.

(ii) For a , M we recover the anticipated exponential
falloff at late times; cf. [6]. Still, the emerging signal
differs considerably from a single QNM oscillation at in-
termediate times for near extreme black holes. We are
currently investigating this behavior in further detail.

(iii) For axisymmetric perturbations (m � 0) the
numerical evolution recovers the standard power-law tail.
For our particular choice of initial data (that contain the
l � 0 multipole) the tail falls off as t23.
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FIG. 1. A numerical evolution showing the late-time behavior
of a scalar field in the geometry of a rapidly rotating black hole.
We show (on a logarithmic scale) the field as viewed by an
observer situated well away from the black hole for a � M. At
late times the field falls off according to an oscillating power
law with the amplitude decaying as 1�t. The data correspond to
a narrow Gaussian (initially centered at r� � 50M) that hits the
black hole, and the reflected wave is observed at r� � 10M.

Our interpretation of these results is as follows. First,
the numerical evolutions confirm the analytic prediction
for extreme Kerr black holes, i.e., that the field will os-
cillate with an amplitude that decays as 1�t at very late
times. Second, and more important physically, the numeri-
cal data suggest that the intermediate-to-late time behavior
of a perturbed Kerr black hole is not well described by a
single slowly damped QNM when a , M. This behav-
ior must be investigated in greater detail in order to assess
to what extent the late-time signals from a rapidly rotat-
ing black hole are detectable even though each individual
QNM has a small amplitude. In particular, it is crucial to
determine whether one will be able to infer the black hole
parameters from a signal that contains a superposition of
several slowly damped QNMs (perhaps using techniques
similar to those introduced in [20]). It is also interesting to
ask whether there exists a critical value of the rotation pa-
rameter a above which the new effect we have observed for
the extreme case becomes relevant (recall that our approxi-
mate modes are relevant only for a � M). More detailed
numerical work is needed to establish this, and to investi-
gate the role of the new effect further.

A physical interpretation.—Given both the analytic pre-
diction and the numerical confirmation for extreme Kerr
black holes an intriguing picture emerges. Our results
suggest the existence of a new phenomenon in black-hole
physics, with relevance at late times. We recall that the
QNMs are typically interpreted, in analogy with scattering
resonances in quantum physics, as originating from waves
that are temporarily trapped close to the peak of the curva-
ture potential (corresponding to the unstable photon orbit
at r � 3M in the Schwarzschild space time), and that the
late-time power-law tail arises because of backscattering
off of the weak potential in the far zone. Can the present
results be interpreted in a similar intuitive vein? We think
they can, and propose the following explanation: Con-
sider the fate of an essentially monochromatic wave that
falls onto the black hole. Provided that the frequency is
in the interval 0 , v , mv1 the wave will be superra-
diant. In effect, this means that a distant observer will see
waves “emerging from the horizon” [cf. (3)], even though
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a local observer sees the waves crossing the event hori-
zon (at r1) [15]. This results in the scattered wave being
amplified. In addition to this, one can establish that the ef-
fective potential has a peak outside the black hole (which
is not immediately obvious since the potential is frequency
dependent in the Kerr case) for a range of frequencies in-
cluding the superradiant interval. The combination of the
causal boundary condition at the horizon effectively corre-
sponding to waves “coming out of the black hole” (accord-
ing to a distant observer) and the presence of a potential
peak leads to waves potentially being trapped in the region
close to the horizon. In effect, there is a “superradiance
resonance cavity” outside the black hole. Again according
to a distant observer, waves can escape from this cavity
only by leakage through the potential barrier to infinity.
Since the superradiant amplification is strongest for fre-
quencies close to mv1, waves in the cavity experience a
kind of parametric amplification and at very late times the
dominant oscillation frequency ought to be mv1. This is,
of course, exactly what we have deduced from our analytic
and numerical calculations. In the extreme black hole case
leakage from the superradiance cavity leads to the observed
1�t decay. In the near extreme case, the existence of the
cavity provides an intuitive explanation for the extremely
slow damping of corotating QNMs with frequencies close
to mv1.

We have presented the results of an investigation into
the late-time behavior of a perturbed Kerr black hole. An
analytic calculation for the near extreme Kerr black hole
case led to two important results. First, we deduced that
even though some QNMs become very slowly damped
as a ! M these modes will not be easier to detect with
a gravitational-wave detector than their rapidly damped
Schwarzschild counterparts. Second, we arrived at the
rather surprising prediction that the large number of virtu-
ally undamped QNMs that exist for each value of m fi 0
combine in such a way that the field oscillates with an
amplitude that decays as 1�t at late times. This decay is
considerably slower than the standard power-law tail. The
analytic prediction for near extreme black holes was then
verified using numerical time evolutions of the Teukol-
sky equation. Whether this effect is of astrophysical rele-
vance (recall that astrophysical black holes must have a #

0.998M [21]) is an issue that requires further investiga-
tion, but it is possible that it will play a role at intermediate
times for nonextreme black holes (for which the signal will
be dominated by the slowest damped QNM at late times).
4540
Finally, we have proposed an intuitive explanation of the
observed phenomenon: Waves of certain frequencies are
effectively trapped in a “superradiance resonance cavity”
immediately outside the black hole. In conclusion, we find
these results tremendously exciting since they indicate the
presence of a new phenomenon in black-hole physics.
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