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Gravitational Energy-Momentum Density in Teleparallel Gravity
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In the context of a gauge theory for the translation group, a conserved energy-momentum gauge
current for the gravitational field is obtained. It is a true spacetime and gauge tensor, and transforms
covariantly under global Lorentz transformations. By rewriting the gauge gravitational field equation in
a purely spacetime form, it becomes the teleparallel equivalent of Einstein’s equation, and the gauge
current reduces to the Møller’s canonical energy-momentum density of the gravitational field.

PACS numbers: 04.50.+h
The definition of an energy-momentum density for the
gravitational field is one of the oldest and most contro-
versial problems of gravitation. As a true field, it would
be natural to expect that gravity should have its own
local energy-momentum density. However, it is usually
asserted that such a density cannot be locally defined
because of the equivalence principle [1]. As a conse-
quence, any attempt to identify an energy-momentum
density for the gravitational field leads to complexes
that are not true tensors. The first of such attempts was
made by Einstein who proposed an expression for the
energy-momentum density of the gravitational field which
was nothing but the canonical expression obtained from
Noether’s theorem [2]. Indeed, this quantity is a pseu-
dotensor, an object that depends on the coordinate system.
Several other attempts have been made, leading to differ-
ent expressions for the energy-momentum pseudotensor
for the gravitational field [3].

Despite the existence of some controversial points re-
lated to the formulation of the equivalence principle [4],
it seems true that, in the context of general relativity, no
tensorial expression for the gravitational energy-momen-
tum density can exist. However, as our results show, in
the gauge context, the existence of an expression for the
gravitational energy-momentum density which is a true
spacetime and gauge tensor turns out to be possible. Ac-
cordingly, the absence of such an expression should be at-
tributed to the general relativity description of gravitation,
which seems to not be the appropriate framework to deal
with this problem [5].

In spite of some skepticism [1], there has been a contin-
uous interest in this problem [6]. In particular, a quasilo-
cal approach has been proposed recently which is highly
clarifying [7]. According to this approach, for each gravi-
tational energy-momentum pseudotensor, there is an as-
sociated superpotential which is a Hamiltonian boundary
term. The energy momentum defined by such a pseudoten-
sor does not really depend on the local value of the refer-
ence frame, but only on the value of the reference frame
on the boundary of a region—then its quasilocal character.
As the relevant boundary conditions are physically accept-
able, this approach validates the pseudotensor approach to
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the gravitational energy-momentum problem. It should be
mentioned that these results were obtained in the context
of the general relativity description of gravitation.

In the present work a different approach will be used
to reexamine the gravitational energy-momentum problem.
Because of the fundamental character of the geometric
structure underlying gauge theories, the concept of cur-
rents, and, in particular, the concepts of energy and mo-
mentum, are much more transparent when considered from
the gauge point of view [8]. Accordingly, we are going to
consider gravity as described by a gauge theory [9]. Our
basic interest will be concentrated on the gauge theories
for the translation group [10], and, in particular, on the
so-called teleparallel equivalent of general relativity [11].
It is important to remark that this equivalence is true only
in the absence of spinor matter fields [12].

Let us start by reviewing the fundamentals of the
teleparallel equivalent of general relativity. We use
the Greek alphabet � m, n, r, . . . � 0, 1, 2, 3� to denote
indices related to spacetime, and the Latin alphabet
�a, b, c, . . . � 0, 1, 2, 3� to denote indices related to the
tangent space (fiber), assumed to be a Minkowski space
with the metric hab � diag�11, 21, 21, 21�. A gauge
transformation is defined as a local translation of the
tangent-space coordinates,

dxa � dabPbxa, (1)

with Pa � ≠�≠xa the translation generators, and daa

the corresponding infinitesimal parameters. Denoting the
gauge potentials by Aa

m, the gauge covariant derivative of
a general matter field C is [13]

DmC � ha
m≠aC , (2)

where

ha
m � ≠mxa 1 c22Aa

m (3)

is a nontrivial tetrad field, with c the speed of light. From
the covariance of DmC, we obtain the transformation of
the gauge potentials:

Aa0

m � Aa
m 2 c2≠mdaa. (4)
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As usual in Abelian gauge theories, the field strength is
given by

Fa
mn � ≠mAa

n 2 ≠nAa
m , (5)

which satisfies the relation

�Dm,Dn�C � c22Fa
mnPaC . (6)

It is important to remark that, whereas the tangent-space
indices are raised and lowered with the metric hab , the
spacetime indices are raised and lowered with the Rie-
mannian metric

gmn � habha
mhb

n . (7)

A nontrivial tetrad field induces on spacetime a tele-
parallel structure which is directly related to the presence
of the gravitational field. In fact, given a nontrivial tetrad
ha

m, it is possible to define a Cartan connection

Gr
mn � h r

a ≠nha
m , (8)

which is a connection presenting torsion, but no curva-
ture [14]. As a natural consequence of this definition,
the Cartan covariant derivative of the tetrad field vanishes
identically:

=nha
m � ≠nha

m 2 Gu
mnha

u � 0 . (9)

This is the absolute parallelism condition. The torsion of
the Cartan connection is

Tr
mn � Gr

nm 2 Gr
mn , (10)

from which we see that the gravitational field strength is
nothing but torsion written in the tetrad basis:

Fa
mn � c2ha

rTr
mn . (11)

The Cartan connection G
r
mn and the Levi-Civita connec-

tion of the metric (7), denoted by G
±r

mn , are related by

Gr
mn � G

±r
mn 1 Kr

mn , (12)

with

Kr
mn � 1

2 �T r
m n 1 T r

n m 2 Tr
mn� , (13)

the contorsion tensor.
The gauge gravitational field Lagrangian is given by [13]

LG �
hc4

16pG
SrmnTrmn , (14)

where h � det�ha
m�, and

Srmn � 2Srnm � 1
2 �Kmnr 2 grnT

um
u 1 grmTun

u�

is a tensor written in terms of the Cartan connection only.
As usual in gauge theories, it is quadratic in the field
strength. By using relation (12), this Lagrangian can be
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rewritten in terms of the Levi-Civita connection. Up to
a total divergence, the result is the Hilbert-Einstein La-
grangian of general relativity

L � 2
c4

16pG
p

2g R
±

, (15)

where the identification h �
p

2g has been made.
By performing variations in relation to the gauge field

A r
a , we obtain from the gauge Lagrangian LG the tele-

parallel version of the gravitational field equation,

≠s�hS sr
a � 2

4pG
c4 �hj r

a � � 0 , (16)

where S sr
a � h l

a S
sr

l . Analogously to the Yang-Mills
theories [15],

hj r
a � 2

≠LG

≠ha
r

�
c4

4pG
hh l

a S nr
m T

m
nl 2 h r

a LG (17)

stands for the gravitational gauge current, which in this
case represents the energy and momentum of the gravita-
tional field. The term �hS sr

a � is called superpotential in
the sense that its derivative yields the gauge current �hj r

a �.
Because of the antisymmetry of S sr

a in the last two in-
dices, �hj r

a � is conserved as a consequence of the field
equation:

≠r�hj r
a � � 0 . (18)

Making use of the identity

≠rh � hGn
nr � h�Gn

rn 2 Kn
rn� , (19)

this conservation law can be rewritten as

Drj r
a � ≠rj r

a 1 �Gr
lr 2 K

r
lr� j l

a � 0 , (20)

where Dr is the teleparallel version of the covariant deriva-
tive, which is nothing but the Levi-Civita covariant deriva-
tive of general relativity rephrased in terms of the Cartan
connection [16]. As can be easily checked, j r

a transforms
covariantly under a general spacetime coordinate trans-
formation, and is invariant under local (gauge) translation
of the tangent-space coordinates. This means that j r

a is a
true spacetime and gauge tensor. However, it transforms
covariantly only under a global tangent-space Lorentz
transformation.

Let us now proceed further and find out the relation
between the above gauge approach and general relativity.
By using Eq. (8) to express ≠rh l

a , the field equation (16)
can be rewritten in a purely spacetime form,

≠s�hS
sr

l � 2
4pG

c4 �ht
r

l � � 0 , (21)

where now

ht
r

l �
c4

4pG
hG

m
nlS nr

m 1 d
r

l LG (22)
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stands for the teleparallel version of the canonical energy-
momentum pseudotensor of the gravitational field. De-
spite not explicitly apparent, as a consequence of the
local Lorentz invariance [17] of the gauge Lagrangian LG ,
the field equation (21) is symmetric in �lr�. Furthermore,
by using Eq. (12), it can be rewritten in terms of the
Levi-Civita connection only. As expected, due to the
equivalence between the corresponding Lagrangians, it is
the same as Einstein’s equation:

h
2

∑
R
±

mn 2
1
2

gmnR
±
∏

� 0 . (23)

The canonical energy-momentum pseudotensor t
r

l is
not simply the gauge current j r

a with the algebraic index
“a” changed to the spacetime index “l.” It incorporates
also an extra term coming from the derivative term of
Eq. (16):

t
r

l � ha
lj r

a 1
c4

4pG
G

m
lnS nr

m . (24)

We see thus clearly the origin of the connection term
which transforms the gauge current j r

a into the energy-
momentum pseudotensor t

r
l . Through the same mecha-

nism, it is possible to appropriately exchange further terms
between the derivative and the current terms of the field
equation (21), giving rise to different definitions for the
energy-momentum pseudotensor, each one connected to a
different superpotential �hS

rs
l �. Like the gauge current

�hj r
a �, the pseudotensor �ht

r
l � is conserved as a conse-

quence of the field equation:

≠r�ht
r

l � � 0 . (25)

However, in contrast to what occurs with j r
a , due to the

pseudotensor character of t
r

l , this conservation law can
not be rewritten with a covariant derivative.

Because of its simplicity and transparency, the teleparal-
lel approach to gravitation seems to be much more ap-
propriate than general relativity to deal with the energy
problem of the gravitational field. In fact, Møller already
noticed a long time ago that a satisfactory solution to the
problem of the energy distribution in a gravitational field
could be obtained in the framework of a tetrad theory. In
our notation, his expression for the gravitational energy-
momentum density is [18]

ht
r

l �
≠L

≠≠rha
m

≠lha
m 1 d

r
l L , (26)

which is nothing but the usual canonical energy-
momentum density yielded by Noether’s theorem. Using
for L the gauge Lagrangian (14), it is an easy task to
verify that Møller’s expression coincides exactly with
the teleparallel energy-momentum density appearing in
the field equations (21) and (22). Since j r

a is a true
spacetime tensor, whereas t

r
l is not, we can say that

the gauge current j r
a is an improved version of the

Møller’s energy-momentum density t
r

l . Mathematically,
they can be obtained from each other by Eq. (24). It
should be remarked, however, that both of them transform
covariantly only under global tangent-space Lorentz
transformations. This is, we believe, the farthest one
can go in the direction of a tensorial definition for the
energy and momentum of the gravitational field. The lack
of a local Lorentz covariance can be considered as the
teleparallel manifestation of the pseudotensor character
of the gravitational energy-momentum density in general
relativity. Accordingly, we can say that, if it were possible
to define a local Lorentz covariant gauge current in the
teleparallel gravity, the corresponding general relativity
energy-momentum density would be represented by a true
spacetime tensor.

The results can be summarized as follows. In the
context of a gauge theory for the translation group, we
have obtained an energy-momentum gauge current j r

a
for the gravitational field which transforms covariantly
under spacetime general coordinate transformations,
and is invariant under local (gauge) translations of the
tangent-space coordinates. This means essentially that
j r

a is a true spacetime and gauge tensor. By rewriting
the gauge field equation in a purely spacetime form, it
becomes equivalent to Einstein’s equation of general rela-
tivity, and the gauge current j r

a reduces to the canonical
energy-momentum pseudotensor of the gravitational field,
which coincides with Møller’s well-known expression. In
the ordinary context of general relativity, therefore, the
energy-momentum density for the gravitational field will
always be represented by a pseudotensor.

According to the quasilocal approach, to any energy-
momentum pseudotensor there is an associated superpo-
tential which is a Hamiltonian boundary term [7]. On
the other hand, the teleparallel field equations explicitly
exhibit both the superpotential and the gravitational
energy-momentum complex. We see then that, in fact,
by appropriately exchanging terms between the superpo-
tential and the current terms of the field equation (21),
it is possible to obtain different gravitational energy-
momentum pseudotensors with their associated super-
potentials. In this context, our results can be rephrased
according to the following scheme. First, notice that the
left-hand side of the field equation (21) as a whole is a
true tensor, though each one of its two terms is not. Then
if we extract the spurious part from the first term, so that
it becomes a true spacetime and gauge tensor, and add this
part to the second term, the energy-momentum density, it
becomes also a true spacetime and gauge tensor. We thus
arrive at the gauge-type field equation (16), with �hS sr

a �
as the superpotential, whose corresponding expression for
the conserved energy-momentum density for the gravita-
tional field, given by j r

a , though transforming covariantly
only under a global tangent-space Lorentz transformation,
is a true spacetime and gauge tensor.
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