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Josephson Effects in Dilute Bose-Einstein Condensates
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We propose an experiment that would demonstrate the dc and ac Josephson effects in two weakly
linked Bose-Einstein condensates. We consider a time-dependent barrier, moving adiabatically across the
trapping potential. The phase dynamics are governed by a “driven-pendulum” equation, as in current-
driven superconducting Josephson junctions. At a critical velocity of the barrier (proportional to the
critical tunneling current), there is a sharp transition between the dc and ac regimes. The signature is a
sudden jump of a large fraction of the relative condensate population. Analytical results are compared
with a numerical integration of the Gross-Pitaevskii equation, in an experimentally realistic situation.

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj, 74.50.+r
The Josephson effects (JE’s) are a paradigm of the phase
coherence manifestation in a macroscopic quantum sys-
tem [1–3]. Observed early on in superconductors [2],
JE’s have been demonstrated in two weakly linked su-
perfluid 3He-B reservoirs [4]. Weakly interacting Bose-
Einstein condensate (BEC) gases [5] provide a further (and
different) context for JE’s. Indeed, magnetic and opti-
cal traps can be tailored and biased (by time-dependent
external probes) with high accuracy [6–8], allowing the
investigation of dynamical regimes that might not be acces-
sible with other superconducting�superfluid systems. The
macroscopic BEC’s coherence has been demonstrated by
interference experiments [6,7], and the first evidence of
coherent tunneling in an atomic array, related to the “ac”
JE, has been recently reported [8].

A superconducting Josephson junction (SJJ) is usually
biased by an external circuit that typically includes a cur-
rent drive Iext. The striking signatures of the Josephson
effects in SJJ are contained in the voltage-current char-
acteristic (V -Iext), where usually one can distinguish be-
tween the superconductive branch or “dc” branch (V � 0,
Iext fi 0), and the resistive branch or “ac” branch (V �
RIext) (see, for example, [2]). External circuits and cur-
rent sources are absent in two weakly linked Bose conden-
sates and the Josephson effects have been related, so far,
with coherent density oscillations between condensates in
two traps or between condensates in two different hyper-
fine levels [9–14]. This collective dynamical behavior is
described by a nonrigid pendulum equation [9], predicting
a new class of phenomena not observable with SJJ’s.

Now the following question arises: can two weakly
linked condensates exhibit the analog of the voltage-
current characteristic in SJJ? Although BECs are obvi-
ously neutral, the answer is positive. A dc current-biased
SJJ can be simulated by considering a tunneling barrier
moving with constant velocity across the trap. At a critical
velocity of the barrier a sharp transition between the dc
and ac (boson) Josephson regimes occurs. This transition
is associated with a macroscopic jump in the population
difference, that can be easily monitored experimentally by
destructive or nondestructive techniques.
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In the following, we will briefly introduce the phe-
nomenological equations of the resistively shunted
junction (RSJ) model for the SJJ. We will describe
the corresponding experiment for two weakly linked
BECs and show that the relevant equations are formally
equivalent to the RSJ equations. Then we compare the
analytical results with a numerical integration of the
Gross-Pitaevskii equation in a realistic 3D setup.

In the RSJ model, SJJ is described by an equivalent
circuit [2] in which the current balance equation is

Ic sin�u� 1 GV 1 C �V � Iext , (1)

where Ic is the upper bound of the Josephson supercur-
rent I [which is represented, in the ideal case, by the
sinusoidal current-phase relation I � Ic sin�u�]; G is an
effective conductance (offered by the quasiparticles and the
circuit shunt resistor), and C is the junction capacitance.
The voltage difference V across the junction is related to
the relative phase u by

�u � 2eV�h̄ . (2)
In the low conductance limit G ø vpC where vp �p

2eIc�h̄C is the Josephson plasma frequency, combining
Eqs. (1) and (2) leads to the “driven pendulum” equation

ü � 2v2
p

≠

≠u
U�u� , (3)

where U is the tilted “washboard” potential:

U�u� � 1 2 cos�u� 1 iu , (4)

with i � Iext�Ic. This equation describes the transient be-
havior before the stationary dissipative behavior is reached
(resistive branch). If we start from equilibrium, with
i � 0, and increase adiabatically the current, no voltage
drop develops until the critical value i � 1 is reached (ne-
glecting secondary quantum effects). At this point V con-
tinuously develops until a stationary asymptotic dissipative
behavior is reached in a time scale approximately of order
C�G. Similar phenomenology may occur in BECs and we
will derive equations formally identical to Eqs. (3) and (4).

A weak link between two condensates can be created by
focusing a blue-detuned far-off-resonant laser sheet into
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the center of the magnetic trap [6]. The weak link can
be tailored by tuning the width and/or the height of the
laser sheet. Raman transitions between two condensates in
different hyperfine levels provide a different weak link [7],
in analogy with the “internal Josephson effect” observed in
the 1970s with 3He-A [15].

Here we consider a double well potential in which the
laser sheet slowly moves across the magnetic trap with
velocity y (but our framework can be easily adapted to
investigate the internal Josephson effect). In the limit of
very low y, the two condensates remain in equilibrium, i.e.,
in their instantaneous ground state, because of the nonzero
tunneling current that can be supported by the barrier. In
fact, an average net current, proportional to the velocity
of the laser sheet, flows through the barrier, sustained by
a constant relative phase between the two condensates.
This keeps the chemical potential difference between the
two subsystems locked to zero, as in the SJJ dc branch.
However, the superfluid component of the current flowing
through the barrier is bounded by a critical value Ic. As
a consequence there exists a critical velocity yc, above
which a nonzero chemical potential difference develops
across the junction. This regime is characterized by a
running-phase mode, and provides the analog of the ac
branch in SJJ’s.

The “dc” and “ac” BEC regimes are governed by a phase
equation similar to the current-driven pendulum Equa-
tions (3) and (4). Such equations together with the si-
nusoidal current-phase relation I � Ic sin�u� describe the
phase difference and current dynamics. The dimensionless
current i is related to the barrier velocity by

i � y�yc , (5)

with the critical velocity yc given by

yc �
h̄v2

p

F
, (6)

where F is to a good approximation represented by double
the average force exerted by the magnetic trap on single
atoms in one well.

Equations (3)–(6) can be derived by a time-dependent
variational approximation and have also been verified, as
we discuss below, by the full numerical integration [18]
of the Gross-Pitaevskii equation (GPE) [16,17]. The GPE
describes the collective dynamics of a dilute Bose gas at
zero temperature:

ih̄
≠

≠t
C � �H0�t� 1 gjCj2�C , (7)

where H0�t� � 2
h̄2

2m =2 1 Vext�r, t� is the noninteracting
Hamiltonian and where g � 4p h̄2a�m, with a the scat-
tering length and m the atomic mass. The order parameter
C � C�r, t� is normalized as

R
drjC�r, t�j2 � N ,

with N the total number of atoms. The external po-
tential is given by the magnetic trap and the laser
barrier Vext�r, t� � Vtrap�r� 1 Vlaser �z, t�. We consider
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a harmonic, cylindrically symmetric trap Vtrap�r� �
1
2 mv2

r �x2 1 y2� 1
1
2 mv

2
0z2 where vr and v0 are the

radial and longitudinal frequency, respectively. The barrier
is provided by a Gaussian shaped laser sheet, focused near
the center of the trap Vlaser �z� � V0 exp�2�z 2 lz�2�l2�
with the coordinate lz�t� describing the laser motion and
y � dlz�dt its velocity.

Equations (3) to (6) can be derived by solving variation-
ally the GPE using the ansatz: C�r, t� � c1�t�c1�r� 1

c2�t�c2�r�, where cn �
p

Nn�t� exp�iun�t�� are complex
time-dependent amplitudes of the left n � 1 and right
n � 2 condensates (see also [9]). The trial wave functions
c1,2�r� are orthonormal and can be interpreted as approxi-
mate ground state solutions of the GPE of the left and right
wells. The equations of motion for the relative population
h � �N2 2 N1��N and phase u � u2 2 u1 between the
two symmetric traps are

h̄ �h � �2EJ�N�
q

1 2 h2 sin�u� , (8)

h̄ �u � Flz�t� 2
2EJ

N
hp

1 2 h2
cos�u� 2

NEc

2
h , (9)

where Ec � 2g
R

drc1�r�4 is the variational ana-
log of the capacitive energy in SJJ, while EJ �
2N

R
drc1�r� �H0 1 gNc

2
1 �r��c2�r� is the Joseph-

son coupling energy. The current-phase relation I �
Ic

p
1 2 h2 sin�u� is directly related to Eq. (8) where the

critical current is given by Ic � EJ�h̄. Flz�t� represents
the contribution to the chemical potential difference in the
two wells due to the laser displacement lz (after linearizing
in lz), and where F �

R
dr�c1�r�2 2 c2�r�2� ≠

≠lz
Vlaser �

mv
2
0

R
dr z�c1�r�2 2 c2�r�2�. The above variational

method provides a simple and useful interpolating scheme
between the low interacting limit N2Ec ø EJ and
the opposite limit N2Ec ¿ EJ . In the last case, and
with h ø 1, we recover the driven-pendulum phase
Eq. (3) and the critical velocity relations (5) and (6)
with h̄vp �

p
EJEc. In particular, it is legitimate to

consider the Josephson coupling as a perturbation, with
the phase dynamics entirely determined by the difference
in the chemical potentials m1�N1, lz� and m2�N2, lz� in the
two wells. In this case Ec corresponds to 2�≠m1�≠N1�lz

and h̄2v2
p � EJ �≠m1�≠N1�lz . The critical velocity is

proportional to the critical current: yc � �dN1

dlz
�21Ic, withµ

dN1

dlz

∂21

�

µ
≠m1

≠lz

∂21

N1

µ
≠m1

≠N1

∂
lz

, (10)

and �≠m1�≠lz�N1 being F�2 in Eq. (6). These derivatives
can be computed numerically. In the Thomas-Fermi (TF)
limit they reduce to µ

≠m1

≠N1

∂
lz

�
g

VTF
(11)

and µ
≠m1

≠lz

∂
N1

�
1

VTF

Z
VTF

dr
≠

≠lz
Vlaser , (12)
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where VTF is the volume of the region in which C1 is
different from zero (in the TF approximation).

We make the comparison of Eqs. (8) and (9) with a
full numerical integration of the GPE in an experimentally
realistic geometry relative to the limit N2Ec ¿ EJ . In
particular, we show that Eq. (6), derived in the limit of
h ø 1, still remains a good approximation even for h �
0.4. The details of the numerical calculation are given
elsewhere [18].

We have considered the JILA setup, with N � 5 3 104

Rb atoms in a cylindrically symmetric harmonic trap, hav-
ing the longitudinal frequency v0 � 50 s21 and the radial
frequency vr � 17.68 s21. The value of the scattering
length considered is a � 58.19 Å. A Gaussian shaped
laser sheet is focused in the center of the trap, cutting it
into two parts. We assume that the (longitudinal) 1�e2

half-width of the laser barrier is 3.5 mm and the barrier
height V0�h̄ � 650 s21.

Although the lifetime of a trapped condensate can be
as long as minutes, we have made a quite conservative
choice, by considering a time scale on the order of 1 s. The
possibility to perform experiments on a longer time scale
will improve the observability of the phenomena we are
discussing. With this choice of time scale, that corresponds
only to few plasma oscillations, an adiabatic increase of the
velocity is not possible, therefore we proceed as follows.
For t , 0 the laser is at rest in the middle of the trap lz �
0, and the two condensates are in equilibrium. For t . 0
the laser moves across the trap, with constant velocity,
and the relative atomic population is observed at tf � 1 s.
With this initial condition, which introduces small plasma
oscillations in the relative population, it is expected, in
the absence of dissipation, to slightly reduce the critical
current by the numerical factor �0.725 (see the general
properties of the driven pendulum equation [2]).

In Fig. 1 we show the relative condensate population
h � �N2 2 N1��N , calculated after 1 s, for different
values of the laser velocity y. The crosses are the
results obtained with the full numerical integration of
the time-dependent GPE (7). The dot-dashed line shows
the equilibrium values heq of the relative population
calculated with the stationary GPE and with the laser at
rest in the “final” position lz � y tf . The displacement of
h�tf� from heq is a measure of the chemical potential dif-
ference, being Dm � m2 2 m1 � NEc�h�tf � 2 heq��2.

For y , 0.42 mm�s, the atoms tunnel through the bar-
rier in order to keep the chemical potential difference
Dm locked around zero. The dc component of the tun-
neling current is accounted for by an averaged constant
phase difference between the two condensates. This is the
close analog of the dc Josephson effect in superconduct-
ing Josephson junctions. The small deviations between
the dashed line and the crosses are due to the presence
of plasma oscillations (induced by our initial condition).
At y � 0.42 mm�s there is a sharp transition, connected
with the crossover from the dc branch to the ac branch in
0.0000 0.0002 0.0004 0.0006
laser velocity [mm/s]
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FIG. 1. Fractional population imbalance versus the velocity of
the laser creating the weak link. A sharp transition between the
“dc” and the “ac” branches occurs at a barrier critical velocity.
The solid line and the crosses are the analytical and the numeri-
cal calculations, respectively. The dash-dotted line represents
the static equilibrium value heq calculated with the center of the
laser at ytf .

SJJ. For y . 0.42 mm�s, the phase difference starts run-
ning and the population difference, after a transient time,
remains on average fixed. A macroscopic chemical poten-
tial difference is established across the junction. In this
regime ac oscillations in the population difference are ob-
served. The frequency of such oscillations are approxima-
tively given by Dm�t��h̄ (not visible in the figure).

The solid line of Fig. 1 corresponds to the solutions of
Eqs. (8) and (9) in which the value of the energy integrals
EcN�h̄ � 2.46 ms21 and EJ�Nh̄ � 2.41 3 1024 ms21

are chosen in order to give the correct value of vp �
2.44 3 1022 ms21 and Ic � 12.1 ms21. The values vp ,
Ic are calculated numerically studying the frequency of
small oscillations around equilibrium and the current-
phase relation, respectively. The force integral is
F�h̄ � 1.060 ms21 mm21. The parameters vp , Ic, and
F are calculated with the laser at rest (y � 0) in lz � 0.
Using these values in Eq. (6) and taking into account the
reducing factor 0.725 we obtain the value 0.407 mm s21

for the critical velocity, in agreement with the value
observed in the simulation.

Small deviations between the variational solutions (full
line in Fig. 1) and the numerical results (crosses in Fig. 1),
above the critical velocity, are due to “level crossing” ef-
fects. Numerical results [18] show that when the conden-
sate ground state of the “upper” well is aligned with the
excited collective dipole state in the “lower” well, a finite
number of atoms go from the “upper” well to the “lower”
well. Close to this tunneling resonance it is possible to con-
trol, by manipulating the barrier velocity below a fraction
of yc, the dc flux of atoms from the ground state conden-
sate in the “upper” well to the longitudinal intrawell col-
lective dipole mode of the condensate in the “lower” well.
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This effect is directly observable in the macroscopic longi-
tudinal oscillations of the two condensates (at frequencies
�v0).

Concerning a possible realization of the phenomenon
described in this work, we note that for small barrier ve-
locities y, the motion of the laser sheet with respect to
the magnetic trap with velocity y or, vice versa, the mo-
tion of the magnetic trap with velocity 2y, are equivalent,
there being negligible corrections due to different initial
accelerations.

Thus far we have discussed the zero temperature limit.
At finite temperature, dissipation can arise due to inco-
herent exchange of thermal atoms between the two wells.
This can be described phenomenologically by including a
term 2EcG �u�v2

p in Eq. (3) where G is the conductance.
Dissipation will be negligible as long as the characteristic
time scale �EcG�21 � �20G�h̄� s is bigger than the time
scale of the experiment (�1 s).

To conclude, we note that while it could be difficult to
measure directly the plasma oscillations, since their ampli-

tude is limited by Dh ,
4
N

q
EJ

Ec
, the macroscopic change

in the population difference may be easily detected with
standard techniques. Moreover the framework that we
have discussed can be easily adapted to investigate the in-
ternal Josephson effect.

Our phenomenological equations are similar to the
driven pendulum equation governing the Josephson effects
in SJJs. As a consequence, within this framework we can
study the “secondary quantum phenomena,” such as the
macroscopic quantum tunneling between different local
minima of the washboard potential (see, for instance,
[19]).
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