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A new method is presented to reconstruct the potential of a quantum mechanical many-body system
from observational data, combining a nonparametric Bayesian approach with a Hartree-Fock approxi-
mation. A priori information is implemented as a stochastic process, defined on the space of potentials.
The method is computationally feasible and provides a general framework to treat inverse problems for
quantum mechanical many-body systems.

PACS numbers: 03.65.–w, 02.50.– r, 21.60.Jz, 71.10.–w
The reconstruction of interparticle forces from obser-
vational data is of key importance for any application of
quantum mechanics to real world systems. Such inverse
problems have been studied intensively in inverse scatter-
ing theory and in inverse spectral theory for one-body sys-
tems in one and, later, in three dimensions [1,2]. In this
Letter we now outline a method, designed to deal with in-
verse problems for many-body systems.

Inverse problems are notoriously ill-posed [3]. It is well
known that for ill-posed problems additional a priori infor-
mation is required to obtain a unique and stable solution.
In this Letter we refer to a nonparametric Bayesian frame-
work [4,5] where a priori information is implemented
explicitly, i.e., in the form of stochastic processes over
potentials [6].

Calculating an exact solution is typically not feasible for
inverse many-body problems. As an example of a possible
approximation scheme we will study in the following an
“inverse Hartree-Fock approximation” (IHFA). For situ-
ations where a Hartree-Fock (HF) ansatz is not sufficient,
the inverse problem would have to be solved on top of
other approximation schemes. A random phase approxi-
mation or a full time-dependent Hartree-Fock approxima-
tion [7–10], for example, would go beyond HF.

Bayesian methods can easily be adapted to different
learning situations and have therefore been applied to a va-
riety of empirical learning problems, including classifica-
tion, regression, density estimation [11–13], and, recently,
to quantum statistics [6]. In particular, using a Bayesian
approach for quantum systems, it is straightforward to deal
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with measurements of arbitrary quantum mechanical ob-
servables, to include classical noise processes, and to im-
plement a priori information explicitly in terms of the
potential.

To define the problem let us consider many-fermion
systems with Hamiltonians, H � T 1 V , consisting of
a one-body part T [e.g., in coordinate space representa-
tion 2�1�2m�D, with Laplacian D, mass m, h̄ � 1], and
a two-body potential V . Introducing fermionic creation
and annihilation operators ay

a , aa , corresponding to a com-
plete single particle basis jwa�, such Hamiltonians can be
written

H �
X
ab

Tabay
aab 1

1
4

X
abgd

Vabgday
aa

y
badag , (1)

with Tab � �wajT jwb� and antisymmetrized matrix ele-
ments Vabgd � �wawbjV jwgwd�. In particular, not
to complicate the numerical calculations unnecessarily,
we will study local two-body potentials depending only
on the distance between two particles z � jx�1� 2 x�2�j,
i.e., Vx�1�x�2�x

0
�1�x

0
�2�

� y�z� �dx�1�,x
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dx�2�,x
0
�2�
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0
�2�

dx�2�,x
0
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�.
(Being interested in numerical applications we will
use discretized x variables.) Our aim is to reconstruct
the function y�z� from observational data.

In order to apply the Bayesian framework we need two
model inputs: first, the probability p�D jy� of measuring
the observational data D given a potential y (for fixed
D also known as likelihood of y), and, second, a prior
probability p�y� for y. The probability for y given data D,
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also called the posterior probability for y, is then obtained
according to Bayes’ rule,

p�y jD� ~ p�D jy�p�y� . (2)

As solution of the reconstruction problem we will con-
sider the potential with the maximal posterior probability
(2). This approach, also known as maximum a posteriori
approximation (MAP), can be regarded as resulting
from an approximation for the predictive probability
p�DF jD� �

P
y p�DF jy�p�y jD� of future observa-

tions DF given data D. The sum
P

y , standing for a
summation over all values y�z� of the potential y (a
functional integral for continuous z), can typically not be
calculated exactly. Assuming that the main contribution to
the sum comes from the potential with maximal posterior
probability (MAP), i.e., p�DF jD� � p�DF jy�� where
y� � arg maxyp�y jD�, we are left with maximizing (2).
This can be done by setting the derivative of the posterior
probability (or, technically often more convenient, its
logarithm) with respect to y�z� to zero.

As the first step, we have to identify the likelihood
p�D jy� of y for observational data D. In order to be
able to obtain information about the potential, the system
has to be prepared in a y-dependent state. Such a state
can be a stationary statistical state, e.g., a canonical en-
semble, or a time-dependent state evolving according to
the Hamiltonian of the system. In the following we will
discuss many-body systems prepared in their ground state
c0. The (normalized) N-particle ground state wave func-
tion c0 depends on y and is antisymmetrized for fermions.
In particular, we will study two kinds of observational data
D � 	Di j 1 # i # n
: (A) n simultaneous measurements
of the coordinates of all N particles, (B) n measurements
of the coordinates of a single particle. In case A, the ith
measurement results in a vector Di � �xi , consisting of N
components xi� j�, each representing the coordinates of a
single particle (which may also form a vector, e.g., a three-
dimensional one). According to the axioms of quantum
mechanics, the probability of measuring the coordinate
vector �xi , given y, is

p� �xi jy� � jc0� �xi�j2 � jc0�xi�1�, . . . , xi�N��j2. (3)

In case B, the probability for the single particle coordinates
x to take the values Di � xi is obtained by summing over
the unobserved coordinates

p�xi jy� �
X
x�2�

· · ·
X
x�N�

jc0�xi , x�2�, . . . , x�N��j2. (4)

Similarly, it is, for example, straightforward to obtain the
likelihoods for measuring interparticle distances z, the par-
ticle number in a certain region, or particle momenta.

In contrast to an ideal measurement of a classical sys-
tem, the state of a quantum system is typically changed
by the measurement process. In particular, its state is pro-
jected in the space of eigenfunctions of the measured ob-
servable with eigenvalue equal to the measurement result.
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Hence, if we want to deal with independent, identically
distributed data, the system must be prepared in the same
state before each measurement. Under that condition the
total likelihood factorizes

p�D jy� �
nY

i�1

p�Di jy� . (5)

As the second step, we have to choose a prior probability
p�y�. Common and convenient choices are Gaussian prior
probabilities (or, for functions, Gaussian processes), for
which

p�y� �

µ
det

K0

2p

∂1�2

e2�1�2� �y2y0jK0jy2y0�, (6)

with positive (semi-)definite covariance K21
0 , and mean

y0�z�, playing the role of a reference potential. A typi-
cal choice for the inverse covariance is the (discretized)
negative Laplacian multiplied with a “regularization pa-
rameter” l, i.e., K0 � 2lD, favoring smooth potentials.
Higher order differential operators are, for example, often
included in K0 for regression problems to get differentiable
regression functions. Covariances can be constructed to
implement general approximate symmetries, such as ap-
proximate periodicity of y [6].

Having defined a likelihood p�D jy� for many-body
quantum systems and a prior probability p�y� the next step
is to solve the stationarity equation for the posterior proba-
bility (2)

0 � ≠y�z� lnp�y� 1
X

i

≠y�z� lnp� �xi jy� , (7)

where we introduced the notation ≠y�z� � ≠�≠y�z�. The
derivative of a Gaussian prior with respect to y�z� is easily
found as

≠y lnp�y� � 2K0�y 2 y0� , (8)

≠y denoting the gradient with respect to y, having compo-
nents ≠y�z�. To calculate the derivatives of the likelihoods
(3) and (4) we need to know ≠y�z�c0. It is straightforward
to show, by taking the derivative of Hc0 � E0c0 with re-
spect to y�z� that, for a nondegenerate ground state,

j≠y�z�c0� �
X
gfi0

1
E0 2 Eg

jcg� �cgj≠y�z�Hjc0� , (9)

with a complete basis of eigenstates cg , energies Eg , and
requiring �c0 j ≠y�z�c0� � 0 to fix norm and phase. Fur-
thermore, from ≠y�z�y�z0� � dz,jx0

�1�2x0
�2�j

directly follows

≠y�z�H �
1
2

X
x

ay
x �ay

x2zax2z 1 a
y
x1zax1z�ax . (10)

Typically, a direct solution of the many-body equation (9)
is not feasible. To get a solvable problem we treat the
many-body system in Hartree-Fock approximation [7,8,10]
(for non-Hermitian H, see [14]). Thus, as the first step of
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an IHFA, we approximate the many-body Hamiltonian H
by a one-body Hamiltonian h defined self-consistently by

hxx0 � Txx0 1

NX
k�1

�xwkjV jx0wk� , (11)

wk being the N-lowest orthonormalized eigenstates of
h, i.e.,

hwk � ekwk , e1 # ek # eN . (12)

The corresponding normalized N-particle Hartree-Fock
ground state jF0� � jw1, . . . , wN � is the Slater determi-
nant made of the N-lowest single particle orbitals wk . The
Hartree-Fock likelihood replacing (3) becomes

pHF� �xi jy� � jF0� �xi�j2 � j detBij
2, (13)

defining the overlap matrix Bi with matrix elements
Bkl;i � wk�xi�l��. Analogously, the likelihood (4) becomes

pHF�xi jy� �
NX

k�1

jwk�xi�j2. (14)

From (13) follows ≠y�z�pHF� �xi jy� � F0� �xi� 3

≠y�z�F
�
0� �xi� 1 F

�
0� �xi�≠y�z�F0� �xi�, so that expanding

the determinant detBi �
PN

l Mkl;iBkl;i in terms of the
cofactors, Mkl,i � �B21

i �lk detBi , yields

≠y�z�F0� �xi� �
NX
kl

Mkl;i≠y�z�wk�xi�l�� . (15)

Hence, to obtain the derivatives of the HF likelihoods (13)
or (14) with respect to y�z�, we have to find ≠y�z�wk .

Again, we proceed by taking the derivative of Eq. (12)
and obtain after standard manipulations (for nondegenerate
ek and �wk j ≠y�z�wk� � 0),

j≠y�z�wk� �
X
lfik

1
ek 2 el

jwl� �wlj≠y�z�hjwk� . (16)

Furthermore, from Eq. (11) follows

≠y�z�hxx0 �
NX

j�1

��xwjj≠y�z�V jx0wj�

1 �x≠y�z�wjjV jx0wj�
1 �xwjjV jx0≠y�z�wj�� . (17)

Therefore, the derivative of the orbitals is found by insert-
ing Eq. (17) into Eq. (16):

≠y�z�wk�x� �
X
lfik

wl�x�
ek 2 el

NX
j�1

��wlwjj≠y�z�V jwkwj�

1 �wl≠y�z�wjjV jwkwj�
1 �wlwjjV jwk≠y�z�wj�� . (18)

That “inverse HF equation” (18) can quite effectively
be solved by iteration, starting, for example, with initial
guess ≠y�z�wj�x� � 0. Because ≠y�z�wk�x� depends on
z and x, Eq. (18), being the central equation of the
IHFA, has the dimension of a two-body equation for
the lowest N orbitals. Introducing, analogously to Bi ,
the matrix Di�z� with Dkl;i�z� � ≠y�z�wk�xi�l�� (for z .

0, 1 # l # N , 1 # k # N , 1 # i # n), it is straight-
forward to check that the derivatives of the logarithm
of the HF likelihoods (13) and (14) are given by

≠y�z� lnpHF� �xi jy� � 2 Re	Tr�B21
i Di�z��
 , (19)

≠y�z� lnpHF�xi jy� � 2
Re�

PN
k�1 w

�
k�xi�≠y�z�wk�xi��PN

l�1 jwl�xi�j2
.

(20)

The stationarity equation (7) can now be solved by itera-
tion, for example,

y�r11� � y�r� 1 h

∑
y0 2 y�r�

1 K21
0

X
i

≠y lnpHF� �xi jy
�r��

∏
, (21)

choosing a positive step width h and starting from an initial
guess y�0�.

In conclusion, reconstructing a potential from data by
IHFA is based on the definition of a prior probability for
y and requires the iterative solution of (i) the stationar-
ity equation for the potential (7), needing as input for
each iteration step (21), (ii) the derivatives of the likeli-
hoods (19) or (20), respectively, obtained by solving the
(two-body-like) equation (18) for given (iii) single par-
ticle orbitals, defined in (12) as solutions of the direct
(one-body) Hartree-Fock equation.

We tested the numerical feasibility of the IHFA for
a Hamiltonian H � T 1 V1 1 V including a local two-
body potential V to be reconstructed and a local one-body
potential V1, with diagonal elements y1�x� � 0 for 2a #

x # a and y1�x� � ` elsewhere, to confine the particles
and to break translational symmetry.

To check the validity of the IHFA we must be able
to sample artificial data from the exact true many-body
likelihood (3) for a given true potential Vtrue. Because this
requires us to solve the corresponding many-body problem
exactly, we have chosen a two-particle system with one-
dimensional x (on a grid with 21 points, a � 10) for which
the true ground state can be calculated by diagonalizing
H numerically. We want to stress, however, that, in the
case of real data, application of the IHFA to systems with
N . 2 particles is straightforward and only requires us to
solve Eq. (18) for N instead for two orbitals.

We selected a local true two-body potential Vtrue with
diagonal elements ytrue�z� � b��1 1 e22g�z2L�2��L� and
parameter values (b � 1, g � 10, L � 2a 1 1 � 21 for
mass m � 0.1) for which the iteration of the HF equation
(12) converges. (For two-body systems the HF iteration
leads easily to oscillations.) Calculating the true ground
state c0 for Vtrue and the corresponding true likelihoods
(3) and (4) we then sampled (A) n � 100 two-particle
data from the true likelihood (3) and (B) n � 100 single
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FIG. 1. Two-particle data (case A): (a) True likelihood
p�z jytrue� (thin line), empirical probability (relative fre-
quency) pemp�z� � �1�n�

Pn
i�1 dz,jxi�1�2xi�2�j (bars) obtained

from the n � 100 sampled two-particle data �xi , reference
likelihood p�z jy0� (dashed line), and reconstructed likelihood
p�z jyIHFA� (thick line) as a function of the interparticle
distance z � jx�1� 2 x�2�j. (b) True potential ytrue�z� (thin line),
reference potential y0�z� (dashed line), and reconstructed IHFA
potential yIHFA�z� (thick line) as a function of the interparticle
distance z.

particle data from the true likelihood (4). (See Figs. 1a
and 2a.)

The calculations have been done for a Gaussian prior
probability p�y� as in (6) with l�I 2 D��2 (with identity
I, l � 5) as inverse covariance K0, and a reference po-
tential y0�z� of the form of ytrue, but with g � 1 (so it be-
comes nearly linear in the shown interval). Furthermore,
we have set all potentials to zero at the origin and con-
stant beyond the right boundary. The reconstructed poten-
tial yIHFA has then been obtained by iterating according to
Eq. (21) and solving Eqs. (12) and (18) within each itera-
tion step.

The resulting IHFA likelihoods p� �xi jyIHFA� (case A,
Fig. 1a) or p�xi jyIHFA� (case B, Fig. 2a) did indeed fit well
the true likelihoods p� �xi jytrue� or p�xi jytrue�, respec-
tively. (Figure 1a shows instead of the two-dimensional
p� �xi jy� for vectors �xi the one-dimensional p�z jy� �P

x�p�x, x 2 z jy� 1 p�x, x 1 z jy�� for the interpar-
ticle distance z.) In particular, in case A the reconstructed

FIG. 2. Single particle data (case B): (a) True likelihood
p�x jytrue� (occluded by thick line), empirical probability
pemp�x� � �1�n�

Pn
i�1 dx,xi (bars) obtained from the n � 100

sampled single particle data xi , reference likelihood p�x jy0�
(dashed line), and reconstructed likelihood p�x jyIHFA� (thick
line) as a function of single particle coordinates x. (b) True
potential ytrue�z� (thin line), reference potential y0�z� (dashed
line), and reconstructed IHFA potential yIHFA�z� (thick line) as
a function of the interparticle distance z.
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likelihood p�z jyIHFA� is over the whole range an im-
provement over the reference likelihood p�z jy0�, while
in case B the IHFA solution p�xi jyIHFA� is nearly exactly
the same as the true likelihood p�xi jytrue�. That perfect
result for case B is due to the fact that reconstructing
the likelihood p�xi jy� for single particle data is a much
simpler task than reconstructing the full p��xi jy�.

The situation is more complex for potentials (Figs. 1b
and 2b). First, one sees that the correlation information
contained in the two-particle data of case A yields a bet-
ter reconstruction for yIHFA than the less informative single
particle data of case B. In both cases, however, the true
potential is only well approximated at medium interpar-
ticle distances. For large and small distances, on the other
hand, the IHFA solution is still dominated by the refer-
ence potential of the prior probability p�y�. This effect
is a consequence of the lack of empirical data in those re-
gions: The probability to find particles at large distances is
small, because the true potential has its maximum at large
distances. Also, measuring small distances is unlikely, be-
cause antisymmetry forbids two fermions to be at the same
place. In such low data regions one must therefore rely on
a priori information.

We are grateful to A. Weiguny for stimulating
discussions.
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