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Human Electroencephalogram Induces Transient Coherence in Excitable Spatiotemporal Chaos
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A time series from a human electroencephal ogram (EEG) is used as a local perturbation to a reaction-
diffusion model with spatiotemporal chaos. For certain finite ranges of amplitude and frequency it is
observed that the strongly irregular perturbations can induce transient coherence in the chaotic system.
This could be interpreted as " on-line” detection of an inherently correlated pattern embedded in the EEG.
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The detection of hidden transient patterns in cerebral
activity as recorded by electroencephalogram (EEG),
or likewise magnetoencephalogram (MEG), is an open
problem. Remarkable changes in the complexity of
patterns with time scales on the order of minutes are well
known and can be characterized by statistical methods and
methods from nonlinear dynamics (see, e.g., [1]). Direct
evidence for more or less stationary low-dimensional
behavior with stable correlations has been restricted to a
few special cases such as EEG of slow-wave seep [2,3]
and of petit mal epileptic seizures [4,5]. Other deep
stages [3] as well as interictal and preictal activity have
defied such a description and are often considered noisy
even though correlations are obviously present [6] (see
also [7]).

The application of measures from nonlinear dynamics
like the calculation of dimensions and characteristic
exponents is possible but the required stationarity of a
considerably long time series is in general not fulfilled.
Therefore care has to be taken when interpreting quan-
titative results for “attractors’ in the cerebral activity.
These concerns notwithstanding interesting results have
been obtained when the dimensional analysis has been
applied to short segments of EEG thereby stressing
relative changes rather than absolute values [8]. Using
a shifting time window of 20 s, Martinerie et al. found
a significant decrease of the correlation density in intra-
cortical signals prior to ictal activity that allowed them
to predict epileptic seizures well in advance with good
reliability [9]. Similarly, with a time window of 30 s,
Lehnertz and Elger reported a significant decrease of a
correlation dimension measure from recordings within the
epileptogenic area before the appearance of statistically
detectable changes [10]. These results are consistent
with the view that the easily detectable icta activity is
preceded by a certain localized abnormal activity pattern
with presumably increased correlations which so far
cannot be detected in the EEG recorded from the scalp.
In genera, this local transient activity is (in integral
measurements from the scalp) hidden within the high-
dimensiona activity of the rest of the brain and thereby
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escapes measures that require the evaluation of a long
segment of EEG time series. As a complement to
the quantitative measures that indicate the presence of
significant short-term changes of EEG complexity, we
propose a qualitative method to detect changes that are
due to the appearance of transient correlated eventsin an
environment with a high noise level.

A spatiotemporal dynamical system is deemed excitable
if alocal perturbation is enhanced to form a strong de-
viation from the nonexcited state and if this deviation is
propagated throughout the medium. If a local perturba
tion is applied repeatedly, then a train of waves can be
generated manifested as a spatiotemporally periodic pat-
tern (see, e.g., [11] for a discussion of some biologically
motivated equations). Commonly, in an excitable system
the nonexcited state is a stable fixed point attractor. In
this contribution, we extend the notion of excitability to
a system whose unperturbed state is deterministic chaos.
Spatiotemporal chaos can be characterized as a dynamic
state of the system which is devoid of long-range spatial
and temporal coherence dueto continuous local divergence
in the behavior of neighboring sites [12—14]. Thus, such
a system will inherently prevent, rather than support, the
propagation of isolated local perturbations. If, however,
the chaotic state is composed of excitable units, i.e., if the
perturbation of one siteleads to asignificant deviation from
the nonexcited behavior (e.g., in amplitude), then repeated
local perturbations of appropriate amplitude and frequency
can lead to a wave train similar to the case where the un-
perturbed state is an excitable fixed point [15]. Because
of the chaotic nature of the unperturbed state, such a sys-
tem is expected to exhibit unigque responses to nonperiodic
and nonstationary local perturbations. We employ an elec-
troencephal ographic time series with broadband frequency
distribution as an ongoing perturbation and demonstrate
how an excitable spatiotemporal chaotic system can dis-
tinguish between different sections of the strongly irregu-
lar time series.

We simulate a model equation which is composed of
coupled nonlinear oscillators. An oscillatory unit obeys
the following reaction-kinetic expression:
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&U = —f(U,V) +V — 08U + a(l — eQ),
1 (1)
—V=fUYV) -V,
w
where  f(U,V) = myU/(1 + U) + myU?V /[(0.81 +

U?)(0.8 + V)]. Q isthe external perturbation which is
applied only to one site of the spatiotemporal system;
i.e, e = 0 for al other sites. These kinetic terms were
originaly introduced to describe the action of celular
calcium ions in response to external stimulation [16].

In the absence of coupling, each unit isin a period-one
oscillatory state. Introducing linear diffusive coupling be-
tween nearest neighbors and imposing zero-flux boundary
conditions for a one-dimensional array of 100 oscillators
creates a spatiotemporal system. Parameters were chosen
such that the dynamics of the spatiotemporal system is
maximally chaotic (with a maximum number of positive
Lyapunov characteristic exponents).

For this system it was found that an external periodic
perturbation of the first oscillator leads to the induction of
a globally coherent state for certain ranges of stimulation
frequency [15]. This coherent state consisted of periodic
waves with an amplitude considerably larger than the am-
plitude of the nonexcited chaotic oscillations. Moreover,
it was possible to use deterministic chaos as a local per-
turbation to obtain an amost periodic state when the mean
frequency of the chaotic oscillations was adjusted appro-
priately [15].

We studied the response of the above spatiotemporal
chaotic system locally perturbed by a human EEG time
series. The EEG (monopolar derivation C3/A2) was ob-
tained from a noncomplaining male subject lying in bed in
stage 2 sleep. Datawere sampled at 100 Hz and band-pass
filtered from 0.5 to 45 Hz. The recorded time series was
deliberately chosen such that it did not contain discernible
regular patterns or pronounced singular occurrences such
as deep spindles. The EEG signal was added to the first
oscillator of the spatiotemporal model with coupling con-
stant e. As arelevant parameter the model speed w was
varied to change the frequencies of the intrinsic oscilla-
tions of the model relative to the EEG time series. All
other parameters were left unchanged.

The model oscillators exhibit “excitability” in the sense
that they respond to a suprathreshold perturbation with
one large amplitude excursion before returning to their
chaotic state. Thus, large amplitude excursions are fre-
quently induced in the first oscillator which is subject
to permanent perturbations. Because of the exponential
divergence in the system introduced by the diffusive cou-
pling, such large amplitude events are, in general, not sup-
ported by the medium and tend to die out unless reinforced
by further stimulation at correct intervals. However, there
are sections of the EEG time series which do support the
propagation of waves into the medium at certain relative
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FIG. 1. Simulation of 100 diffusively coupled oscillators
[Eq. (1)] with zero-flux boundary conditions and externa
perturbation of first oscillator. Parameters: w = 420, ¢ = 6.0,
a = 0.325, my, = 20.0, m; = 23.0. Gaussian white noise is
added to all oscillators (root-mean square amplitude = 0.001).
Time units are model time. (a) Grey-coded space-time plot of
100 oscillators perturbed by 45 s of human EEG. Perturbation
started at the time indicated by an arrow. (b) Section of EEG
time series (10.5 sreal time) that induces coherent wave pattern
(amplitude scaled by a factor of 10%). (c) Space-time plot with
time scale asin (a) except that perturbation consists of repeated
sections shown in (b). (d) Time series of the last (100th)
oscillator in the simulation of (c).

frequencies. Figure la shows a simulation at a constant
model speed. It can be seen that the local stimulation ini-
tiates wavelike changes in the otherwise chaotic system at
several occasions and one such set of waves succeeds in
propagating through the whole array of 100 cells.

The simulation of Fig. 1a was performed with a low
level of superimposed Gaussian white noise. We found
that the observed transient coherence is also induced in
the absence of noise but there exists an optimal level of
noise that supports the spreading of the wave train through
the entire medium increasing the number of waves that
successfully propagate through the medium.

This optimal noise level aso increases the robustness of
the occurrence of transient coherent waves. The result in
Fig. laisqualitatively maintained for different initial con-
ditions of the model system; i.e., it does not depend on
a particular phase relationship between perturbation and
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model dynamics. There exists, however, a minimum per-
turbation amplitude below which no transient waves are
induced. In some cases it was observed that the induced
waves disappear when the perturbation of the first oscil-
lator is too strong. Thus, in general, there exists a finite
window of both frequency and coupling strength for which
the induced waves propagate through the whole system,
and this window is enlarged in the presence of an optimal
level of white noise.

Figure 1b shows the section of EEG time series that is
responsible for the induction of transient coherence. The
section does not contain any obvious features suggesting
the presence of a particular pattern. Neither inspection by
eye nor Fourier analysis reveals any qualitative differences
between this section and other sections of the same time
series that do not induce the spreading of large amplitude
waves.

We picked the section of Fig. 1b and created an extended
time series composed of replicas of this section. This arti-
ficial time series was then applied as a perturbation to the
first oscillator with parameters as before. Figure 1c shows
the result. The time series with repeated copies of the sec-
tionin Fig. 1b induces globa coherence in the spatiotem-
poral chaos. It can be seen that this behavior is robust in
the sense that initial inhomogeneities (caused, for example,
at the point of cutting of the repeated sections) are over-
come and the waves tend to homogenize themselves. Asa
result, the time series of the last oscillator (Fig. 1d) shows
aclear switching from the chaotic oscillation of the unper-
turbed system to the large amplitude oscillations created
by the traveling waves. If the section chosen for repeated
stimul ation was significantly longer than the one displayed
in Fig. 1b, no global coherence could be induced.

Scanning the speed of the model, we found that another
section of the EEG time seriesinduced transient coherence
similar to that shown in Fig. laat adifferent model speed.
Again, choosing the corresponding section of the time se-
ries and applying it repeatedly led to global coherence in
the model.

Asacontrol simulation, we perturbed the first oscillator
with a time series of Gaussian white noise with equal and
up to 3 times the mean amplitude as the EEG time series
but did not observe induced transient coherence in these
cases.

In this somewhat unusual approach an experimentally
recorded time series is used as an input to a differential
eguation. Rather than explicitly analyzing the time series,
we thus let the model’ s complex spatiotemporal dynamics
perform the analysis. The differential equation contains
the following features that make it suitable for such a
treatment: (i) The unperturbed state has mixing properties
(i.e., positive Lyapunov exponents) therewith preventing
short-term excitations from spreading over the entire
array of coupled oscillators. (i) The perturbed system
is a “decision maker” by means of a divergence that
distinguishes the incoherent state of low amplitude chaos

from a coherent (periodic) state with large amplitude.
The decision can be provoked by patterns of proper
frequency embedded within the perturbation. (iii) The
large-amplitude wave pattern is not a stable solution
of the unperturbed model with a zero-flux boundary
condition. Also we did not find evidence that there exists
an unstable periodic solution of corresponding amplitude
and frequency under these conditions. The wave patternis
a stable solution of the unperturbed model with periodic
boundary condition, however. This might help to explain
why continued perturbation of the boundary condition
suffices to induce this pattern in this system. (iv) If a
suitable pattern within the external time series istransient,
it induces large amplitude waves but the model returns to
the former chaotic state when the match islost. If the suit-
able pattern is repeated over and over, the model reaches
and subsequently stays in the globally coherent state.
(v) The most striking feature, as detected in [15], is that
the local perturbation required need not be periodic. It is
sufficient that a sequence of proper stimulations occurs
within certain periods of time. Once the wave pattern
is induced, the system tolerates an occasional missing
stimulus without dissolving into the original chaos of the
system.

Local induction of periodic wave patterns was also ob-
served in other reaction kinetic models with spatiotem-
poral hyperchaos (e.g., those described in [17] and in a
spatiotemporal version of the FitzHugh-Nagumo equation,
see [18,19]). However, in al successful cases the kinetic
oscillator contained at least one autocatalytic term; i.e.,
it contained at least one positive contribution to the trace
of the Jacobian matrix. An oscillator without autocataly-
sis which also generates spatiotemporal hyperchaos in a
diffusion-coupled arrangement [20] did not show any ten-
dency to form coherent patterns when stimulated locally
[18]. For the parameter region studied this oscillator does
not show excitability of the limit cycle created in a super-
critical Hopf bifurcation. The crucia features common to
the isolated kinetic oscillator Eqg. (1) and the other success-
ful systemsis the preserved excitability beyond the super-
critical Hopf bifurcation.

For a number of spatially extended systems, transitions
from chaotic to periodic patterns have been achieved by
means of external perturbations, e.g., applying parametric
disorder to coupled units of forced, damped, nonlinear os-
cillators [21], subjecting a continuous system of coupled
oscillators to strongly resonant forcing [22], and appro-
priate periodic forcing of a nonlinear-drift wave equation
[23]. However, in these and other cases the external per-
turbation had to be applied to all sites at the same time
to achieve global control of the pattern, whereas in the
present case the perturbation of one site suffices to induce
the long-range ordered pattern.

The finding that an optimal noise level supports the
spreading of waves into the chaotic medium bears some
resemblance to the experiments by Kadar et al. [24] who

4503



VOLUME 84, NUMBER 19

PHYSICAL REVIEW LETTERS

8 MAy 2000

reported a noise-supported traveling wave front in a subex-
citable steady state system at an optimal noise level. How-
ever, in our case the transient wave patterns also form and
spread in the absence of any noise and thus the main cause
of support seems to come from the intrinsic deterministic
dynamics.

The main difference between an excitable chaotic sys-
tem and an excitable fixed point is that the fixed point
system requires a single suprathreshold perturbation to
generate a traveling wave, whereas the chaotic system
requires a sequence of correlated perturbations, i.e., a
pattern, for coherent excitations to propagate. Thus the
excitable chaotic system is suitable to act as an on-line
pattern recognition device. It provides, paraphrasing from
Rieke et al., “... a sort of running commentary...” to a
“...world of random but correlated time dependent sig-
nals.” [25]. As an extension of this, it is conceivable that
an excitable chaotic system could be “trained” to search for
specific short-term correlated events. That would open the
possibility to, e.g., detect abnormal activity of an epilepto-
genic center prior to an epileptic seizure in EEG or MEG
recordings.

Finally, we would like to mention that natural sensory
input to the brain is known to induce coherent transient re-
sponses of previously disordered neuronal assemblies, e.g.,
in the visual cortex [26], the olfactory bulb [27], and the
auditory cortex [28]. These transient coherent responses
have been proposed to be connected with the process of
cognition [29]. Our numerical results could be considered
to mimic a component of the underlying dynamics of that
transient coherence.
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