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Quantum Phase Transitions in the Shastry-Sutherland Model for SrCu2���BO3���2
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We investigate quantum phase transitions in the frustrated antiferromagnetic Heisenberg model for
SrCu2�BO3�2 by using the series expansion method. It is found that a novel spin-gap phase, adiabatically
connected to the plaquette-singlet phase, exists between the dimer and the magnetically ordered phases
known thus far. When the ratio of the competing exchange couplings a�� J 0�J� is varied, this spin-gap
phase exhibits a first- (second-) order quantum phase transition to the dimer (the magnetically ordered)
phase at the critical point ac1 � 0.677�2� [ac2 � 0.86�1�]. Our results shed light on some controversial
arguments about the nature of quantum phase transitions in this model.

PACS numbers: 75.10.Jm, 75.40.Cx
Two-dimensional (2D) antiferromagnetic quantum spin
systems with a spin gap have been the subject of con-
siderable interest. A typical compound found recently is
SrCu2�BO3�2 [1], in which the characteristic lattice struc-
ture of the Cu21 spins (see Fig. 1) stabilizes the singlet
ground state. This system has been providing a variety of
interesting phenomena such as the plateaus in the magneti-
zation curve observed at 1�3, 1�4, and 1�8 of the full mo-
ment [1,2]. The spin system may be described by the 2D
Heisenberg model on the square lattice with some diago-
nal bonds which is referred to as the Shastry-Sutherland
model [3], as pointed out by Miyahara and Ueda [4].
The key structure with the orthogonal dimers shown in
Fig. 1 makes the system unique and particularly interest-
ing among 2D spin-gap compounds. In this frustrated sys-
tem, there may occur nontrivial quantum phase transitions
when the nearest-neighbor coupling J and the next-nearest-
neighbor coupling J 0 are varied. Albrecht and Mila [5]
discussed the possibility of a helical phase between the
dimer and the magnetically ordered phases by means of
the Schwinger boson mean-field theory. Recent theoreti-
cal studies, however, have suggested that there may not
be such a helical phase, but the first-order phase transition
occurs from the dimer to the ordered phases [4,6]. Fur-
thermore, a more recent study [7] claims that the phase
transition should be of the second order with the nontrivial
critical exponent n � 0.45�2�. These controversial con-
clusions may come from the fact that quantum phase tran-
sition in the Shastry-Sutherland model suffers from strong
frustration due to the competing exchange interactions J
and J 0, and therefore a careful treatment should be neces-
sary to figure out the correct nature of the phase transition.
In particular, we have to keep in mind that such a strong
frustration may possibly stabilize another spin-gap phase
distinct from the dimer phase.

In this paper, by calculating the ground state energy, the
staggered susceptibility, and the spin gap by means of the
series expansion method, we find that there should exist
a novel spin-gap phase with the disordered ground state,
which is stabilized by the strong frustration between the
dimer and the magnetically ordered phases. The spin-gap
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phase found in this paper undergoes first- (second-) order
quantum phase transition to the dimer (the ordered) phase,
when the exchange couplings J and J 0 are varied. The
existence of the new phase can resolve controversial con-
clusions [4–7] deduced for quantum phase transitions in
this frustrated model. We also point out that the mate-
rial SrCu2�BO3�2 lies around the phase boundary between
these two spin-gap phases, which may give a natural inter-
pretation for the 1�8-plateau formation in the magnetiza-
tion curve.

To investigate the frustrated spin system for the com-
pound SrCu2�BO3�2, we consider the 2D quantum Heisen-
berg model (Shastry-Sutherland model [3,4]), which is
described by the following Hamiltonian:

H � J
X

nn
Si ? Sj 1 J 0

X

nnn
Si ? Sj , (1)

where Si is the s � 1�2 spin operator at the ith site
and J �J 0� represents the nearest-neighbor (next-nearest-
neighbor) antiferromagnetic exchange coupling. For later
convenience, we introduce the ratio a � J 0�J. In Fig. 1,
we have drawn the 2D Heisenberg model schemati-
cally. We note that the system with only the next-nearest-
neighbor coupling J 0 is equivalent to the Heisenberg model
on the square lattice which has a spontaneous staggered

FIG. 1. Lattice structure of the Cu21 spins of SrCu2�BO3�2.
The nearest-neighbor bonds (J) are expressed by the solid lines
and the next-nearest-neighbor bonds �J 0� by the dashed lines.
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magnetization at T � 0 [8,9]. From this point of view, the
nearest-neighbor coupling J is regarded as the coupling
for a diagonal bond (see Fig. 2), which gives rise to the
frustration together with J 0 [3,4].

In order to study quantum phase transitions in this spin
system, we employ the series expansion method devel-
oped by Singh, Gelfand, and Huse [10]. We recall here
that quantum phase transitions in the Shastry-Sutherland
model have been discussed by Weihong et al. [6] and
Müller-Hartmann et al. [7], by means of the dimer and the
Ising expansions, from which the critical point between the
dimer phase and the magnetically ordered phase has been
estimated as ac � 0.691�6� and 0.697�2�, respectively. As
mentioned above, however, there is a controversy to be re-
solved about the nature of the phase transitions. Also, in
order to determine the complete phase diagram, it is cru-
cial to figure out whether there may exist another spin-gap
phase besides the above two phases. We will address this
problem by using the series expansion method.

To see our strategy clearly, we start with the 2D quantum
spin model schematically shown in Fig. 2 [3,4], which is
topologically equivalent to the original model in Fig. 1.

In this figure, we have introduced an auxiliary parameter
l, which parametrizes the antiferromagnetic couplings la-
beled by the bold solid, the thin solid, and the dashed lines,
respectively, as J 0, lJ 0, and lJ 0�a�� lJ�. Note that the
system is reduced to the original Shastry-Sutherland model
in the case of l � 1. An important point is that the intro-
duction of l enables us to perform the cluster expansion
starting from the isolated plaquette singlets (l � 0), which
naturally describes the most likely spin-gap phase distinct
from the dimer phase.

To proceed with the analysis based on the series
expansion, we divide the original Hamiltonian Eq. (1) into
two parts as H � J 0�

P
Si ? Sj 1 l

P
GijSi ? Sj�, where

Gij � 1 or a21 for each bond on the square lattice (see
Fig. 2). The first term is the unperturbed Hamiltonian
which stabilizes the isolated plaquette singlets with the
spin excitation gap. The perturbed Hamiltonian labeled
by l connects these isolated plaquette singlets, from
which a 2D network develops. We expand the staggered

FIG. 2. 2D spin system with the plaquette structure. The solid
circles represent the s � 1�2 spin. The bold solid, the thin
solid, and the dashed lines represent the coupling constants J 0,
lJ 0 and lJ 0�a. When l � 1, this system is reduced to the
Shastry-Sutherland model for SrCu2�BO3�2.
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susceptibility xAF , the spin-triplet excitation energy E�k�,
and the ground state energy Eg as a power series in l.
Here, to estimate the susceptibility, we introduce the
Zeeman term H 0 � h�

P
i[A Sz

i 2
P

i[B Sz
i �, where h is

the staggered magnetic field and A�B� denotes one of the
two sublattices. Note that an asymptotic analysis of the
series expansion is necessary to deduce the accurate phase
boundary on which the susceptibility xAF diverges and
the spin gap D � E�k � 0� vanishes. For this purpose,
we make use of the Padé approximants [11] for both quan-
tities obtained up to the finite order in l. Besides ordinary
Dlog Padé approximants, we also employ biased Padé
approximants [11], for which we assume that the phase
transition in our 2D quantum spin models should belong
to the universality class of the 3D classical Heisenberg
model [8]. Then the critical value of lc is determined
by the formula xAF � �lc 2 l�2g and D � �lc 2 l�n

with the known exponents g � 1.4 and n � 0.71 [12].
We first calculate the staggered susceptibility xAF and

the spin gap D by means of the plaquette expansion up
to the fourth and the fifth order in l, respectively, for
various values of a. Using the Dlog and the biased Padé
approximants, we end up with the phase diagram shown in
Fig. 3.

In this figure, the solid (dashed) line represents the phase
boundary obtained by the biased Padé approximants for the
spin gap (the staggered susceptibility). When a ! ` and
l � 0, the system is reduced to an assembly of the iso-
lated plaquettes with the spin gap. As l is increased, the
correlation between these plaquettes grows up and second-
order quantum phase transition [8] from the spin-gap phase
to the magnetically ordered phase occurs at the critical
point lc � 0.56 for a ! `, which has already been stud-
ied by several groups [13–15]. On the other hand, decreas-
ing a enhances the frustration, which in turn suppresses
the antiferromagnetic correlation, thus shifting the phase
boundary upward for smaller a in the phase diagram. It
is seen that two lines obtained from the distinct quanti-
ties are in good agreement with each other, which implies

FIG. 3. Phase diagram for the 2D spin system with the pla-
quette structure in Fig. 2. The solid (dashed) line indicates the
phase boundary obtained by biased Padé approximants for the
spin gap (the staggered susceptibility).
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that the obtained phase boundary is rather accurate in spite
of the lower-order perturbative calculation. By exploit-
ing the phase boundary determined by means of biased
Padé approximants for the spin gap, the critical value is
given by ac2 � 0.86�1� for l � 1. Recall that the sys-
tem is reduced to the original model only for l � 1. We
thus find that the Shastry-Sutherland model has the dis-
ordered ground state in the region (0 , a , ac2) on the
l � 1 line.

The above result does not necessarily imply that in the
region 0 , a , ac2 the system always belongs to the dis-
ordered phase which is continuously connected to isolated
plaquettes. In fact, it is known that the orthogonal dimer
phase appears in the vicinity of a � 0 [3,4]. Therefore, it
is necessary to clarify how these two spin-gap phases com-
pete with each other by carefully comparing the ground
state energy Eg. To this end, performing the plaquette ex-
pansion up to the seventh order in l with a being fixed,
we estimate the ground state energy Eg for the Shastry-
Sutherland model �l � 1� by means of the first-order inho-
mogeneous differential method [11]. The results are shown
in Fig. 4.

As mentioned above [3,4], the system stabilizes the or-
thogonal dimer ground state for smaller a. It is found,
however, that the first-order transition to the novel spin-gap
phase introduced here occurs at the critical point ac1 �
0.677�2�. It is also seen from this figure that further in-
crease of a induces the antiferromagnetic order, whose
transition point is determined by the crossing point of the
ground state energy obtained, respectively, by the Ising [6]
and plaquette expansions. The result confirms the second-
order phase transition deduced above, and the transition
point estimated from the figure is consistent with ac2 �
0.86�1� obtained by the analysis of the susceptibility and
the spin gap. Consequently, we end up with the phase dia-
gram for the Shastry-Sutherland model as shown in Fig. 5.

FIG. 4. Ground state energy per site as a function of a � J 0�J
(l � 1, Shastry-Sutherland model). The flat line (Eg�JN �
23�8) is the energy of the exact dimer state, while the solid line
with dots (error bars are smaller than the linewidth) is obtained
by the plaquette expansion. For comparison, we also show
the ground state energy obtained by Ising expansion [6] as the
dashed line.
The present results shed light on the controversial argu-
ments whether quantum phase transition in this model is
of the first or second order [4,6,7]. In those previous
studies, it was believed that the phase transition occurs
only once between the dimer phase (I) and the ordered
phase (III), giving rise to some confusion. Our phase dia-
gram clearly resolves this problem by explicitly showing
the existence of the new spin-gap phase (II) which under-
goes the first- (I$II) as well as the second-order transitions
(II$III).

To check the validity of the above phase diagram, we
also show the results for the spin gap as a function of
a � J 0�J in Fig. 6.

In this figure, the results obtained by Weihong et al. [6]
are shown for the orthogonal dimer phase (I: 0 , a ,

ac1). In the new phase (II: ac1 , a , ac2), we deter-
mine the values of the spin gap at k � 0 by means of
the plaquette expansion up to the fifth order in l with the
first-order inhomogeneous differential method. The results
are shown as dots with error bars. As seen in this figure,
with the decrease of a from the second-order transition
point ac2, the spin gap continuously grows up to stabilize
the disordered ground state. As a is further decreased,
first-order phase transition occurs at ac1.

In order to further confirm the present results, we have
performed a different series expansion by choosing iso-
lated plaquettes with diagonal bonds as an initial configu-
ration, which is different from the one shown in Fig. 2.
The calculation of the susceptibility up to the fourth order
yields second-order transition with ac2 � 0.87�3�, being
consistent with the above results. Furthermore, to confirm
first-order phase transition between the two spin-gap states,
we have checked how the first-order phase transition point
known for the 1D orthogonal-dimer chain [16] evolves
with the increase of the interchain couplings. By perform-
ing the exact diagonalization studies for the 4 3 4 sys-
tem, we have found that the first-order transition point for
1D is continuously changed, and in the Shastry-Sutherland
case, it coincides with the one found above within reason-
able accuracy �ac1 � 0.66�, providing further support to
our conclusion on the phase diagram. Although our re-
sults still seem to be partly contradicted by the staggered
magnetization obtained by Weihong et al. [6], we believe
that this could be resolved by further analysis of the results
of the Ising expansion.

Before concluding the paper, a brief comment is in or-
der for the plateau formation in the magnetization curve.

FIG. 5. Phase diagram for the Shastry-Sutherland model.
Phase I represents the orthogonal dimer phase. Phase II newly
obtained is adiabatically connected to the plaquette singlet
phase. Phase III is the magnetically ordered phase.
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FIG. 6. The spin gap as a function of a � J 0�J for the
Shastry-Sutherland model. The solid line for a , ac1 is the
result obtained by Weihong et al. [6]. The dots with error bars
for ac1 , a , ac2 represent the spin gap at k � 0 obtained
by the plaquette expansion.

Experimentally, the plateaus in the magnetization curve
have been observed for the compound SrCu2�BO3�2 at 1�3,
1�4, and 1�8 of the full moment [1,2]. In theoretical stud-
ies [17–19] on the dimer phase, it has been clarified that
the stripe order of the isolated dimer triplets is important
to understand the 1�3 and 1�4 plateaus. On the other
hand, it is not so trivial why the 1�8 plateau occurs in
this compound, although a possible mechanism has been
proposed [17,18]. We think that the formation of the 1�8
plateau may reflect the fact that this compound is located
around the first-order phase transition point between the
two spin-gap phases and thereby possesses the dual prop-
erties inherent in two distinct phases implicitly. We note
here that the new spin-gap phase belongs to the same phase
as the Heisenberg model on the 1�5-depleted square lattice
proposed for CaV4O9. Therefore it is likely that the 1�8
plateau could occur in the same origin discussed by Mo-
moi and Totsuka [18] for the plaquette system related to the
1�5-depleted Heisenberg model. It is interesting to further
clarify the mechanism of the 1�8 plateau by taking into
account the above dual properties explicitly, which is now
under consideration.

In conclusion we have discussed the phase diagram
for the Shastry-Sutherland model for the compound
SrCu2�BO3�2 by means of the series expansion method.
Our analysis has shown that there exists a novel spin-gap
phase with the disordered ground state, which is adia-
batically connected to the plaquette-singlet phase, between
the dimer and the magnetically ordered phases known
thus far. When the exchange coupling ratio a � J 0�J
is varied, first-order phase transition occurs from the
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dimer state to the new spin-gap state, while second-order
phase transition occurs from this spin-gap state to the
magnetically ordered state. This sheds light on the nature
of quantum phase transitions in this model, and resolves
apparently controversial conclusions on this issue.
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