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Molecule-Type Phases and Hund’s Rule in Vertically Coupled Quantum Dots

B. Partoens* and F. M. Peeters†

Departement Natuurkunde, Universiteit Antwerpen (UIA), B-2610 Antwerpen, Belgium
(Received 7 October 1999)

We study the ground state of two vertically coupled quantum dots as a function of the interdot distance
within the spin density functional theory. The tunneling between the dots is included. For small and
large interdot distances the atomic phases are recovered. For intermediate distances new molecule-type
phases are predicted which can be observed experimentally in the addition energies. The results are
interpreted in terms of an effective single particle picture and we find that Hund’s rule breaks down for
11 and 12 electrons. The results are summarized in a phase diagram in which spin and isospin blockade
regions are also found.

PACS numbers: 73.20.Dx, 71.15.Mb, 73.23.Hk, 73.40.Gk
Quantum dots, or artificial atoms, have been the subject
of intense theoretical and experimental research over the
last few years [1]. Artificial atoms are small laboratory
systems in which the effects of electron-electron interac-
tion can be studied in a controlled way, because the dots’
size, shape, and number of electrons can be varied. A more
recent development is the study of vertically coupled dots
[2–4] or artificial molecules, where also the distance be-
tween the dots can be changed.

Austing et al. [5] reported the fabrication of vertically
coupled dots on which they performed single-electron tun-
neling experiments. Asano [6] studied the correlation
effects in a double dot molecule, but considered the sit-
uation in which the Coulomb interaction energy is much
smaller than the confinement energy and in which the low-
est two bonding as well as antibonding shells are com-
pletely filled for all interdot distances. Both conditions
are not fulfilled in typical GaAs quantum dots. Rontani
et al. [7] calculated the ground state energies for differ-
ent interdot distances using a general Hubbard approach
and an exact diagonalization scheme up to six electrons.
Mean-field methods are needed to simplify the compli-
cated many-body problem when one wants to study more
particles. In this Letter we therefore apply the spin density
functional theory (SDFT) formalism which was success-
fully applied before to describe single quantum dots [8].
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As shown by Weinmann et al. [9], the Coulomb os-
cillation peak corresponding to the transition from an
N-electron quantum dot to an �N 1 1�-electron quantum
dot is forbidden at low temperatures if the change in the
total spin is jDSj . 1�2; this blocking effect is called
the spin blockade. However, this spin blockade condition
does not occur for circular quantum dots with parabolic
confinement potential, but it can be realized in vertically
coupled quantum dots.

The purpose of this Letter is to calculate the ground state
of two vertically coupled quantum dots, with the interdot
tunneling included. As we use the Kohn-Sham formalism
it is natural to interpret the results in terms of an effective
single particle picture supplemented by Hund’s rule as in
real atoms. The addition energies which are measured in
single-electron tunneling experiments are calculated and
we propose the suppression of some tunneling peaks due
to spin and isospin blockades.

We consider two circularly symmetric dots, and assume
a parabolic confinement potential V �r� �

1
2mv
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quency v0, with m the effective electron mass. In the
z direction the quantum dots are created by two coupled
quantum wells. The ground state energy and the den-
sity r�r� are expressed in terms of a set of Kohn-Sham
orbitals cjls�r� � exp�2ilu�wjls�r�Z�z�, which are the
eigenstates of the z component of the angular momentum
2l, and satisfy the Kohn-Sham equation
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with s being the z component of the spin. The
total density in the dots is r�r� �

P
s

PNs

j,l jwjls�r�j2.
Here we approximated the density in the z direction by
d functions. Because both dots are identical the density
in each dot is half this total density. The Kohn-Sham
equation includes the intradot and interdot Hartree
potentials:
V intra
H �r� �

Z
dr0

e2r�r 0��2
´jr 2 r0j

,

V inter
H �r� �

Z
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e2r�r 0��2
´jr 2 r0 1 dj

,
(2)

with d � jdj the interdot distance. Exc is the ex-
change-correlation energy functional for which we
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use the local spin density approximation Exc �
2p

R
r�r�exc�r", r#�r dr , where the Tanatar-Ceperley

[10] functional for exc

°
r", r#

¢
was used. The ground state

energy of the double dot system is obtained from
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To solve the Kohn-Sham equation we expand the single
particle wave functions wjls in a Fock-Darwin basis.

For the material parameters we choose typical GaAs val-
ues (m � 0.067me and ´ � 12.4). This yields an effec-
tive Bohr radius of a�

B � 9.79 nm. The strength of the
confinement is set to h̄v0 � 5.78N21�4 meV. For differ-
ent N , this choice keeps the average electron density in
each dot approximately constant, in this case roughly cor-
responding to a (2D) Wigner-Seitz radius rs � 1.75a�

B, as
in a typical vertical quantum dot [5].

The confinement in the z direction consists of two cou-
pled quantum wells. Because of the finite barrier between
both dots the lowest level in the z direction is split into
a symmetric bonding and an antisymmetric antibonding
level. Only these two lowest z levels are included, and
the contribution from excited states is neglected because
the confinement in the z direction is much stronger than
in the plane. The motion in the z direction may be as-
sumed to be decoupled from the in-plane motion and there-
fore the z direction in the Kohn-Sham equation can be
solved separately. As an example we take the dimen-
sions of the quantum wells corresponding to the experi-
mental realization of Ref. [5]: W � 120 Å for the width
of both dots; V0 � 250 meV for the height of the bar-
rier between the dots, which results in the energy splitting
D � 22.86 exp�2d�Å��13.455� meV.

Only the interdot Hartree term is taken into account, and
not the interdot exchange and correlation energy. Because
the barrier between the dots is rather high, the overlap of
wave functions localized in different dots is very small,
which results in a negligible interdot exchange contribu-
tion. By comparing with the energy of a single quantum
dot we estimated the error for not including the interdot
correlation to be ,1% for N . 2.

Figure 1 shows the calculated ground state energy as
a function of d and D for nine electrons in the system.
The levels are labeled by the three quantum numbers
�Sz , Mz , Iz�: spin Sz , angular momentum Mz , and an
isospin quantum number Iz , which is the difference
between the electrons in the bonding level and those in
the antibonding level, divided by 2. The isospin was first
introduced by Palacios and Hawrylak [2] who showed that
it is a good quantum number in the strong coupling limit,
i.e., it is related to the symmetry operation of switching
the individual electrons between the dots [2,4]. In the
weak coupling limit the useful numbers are the number
4434
FIG. 1. The ground state energies as a function of d and D for
nine electrons. The levels are labeled with the quantum numbers
�Sz , Mz , Iz�. The insets show the corresponding single particle
picture.

of electrons in the left and the right dot which can be
easily derived from the isospin quantum number. The
ground state has spin 3�2 and zero angular momentum
for small interdot distances (d , 28.3 Å), while for large
interdot distances (d . 57.2 Å) the angular momentum
has changed to 1. These phases can be understood from
a single particle picture. The single particle energy levels
Enl � h̄v0�2n 1 jlj 1 1� (with n the radial quantum
number) are schematically shown in the insets of Fig. 1.
Because of the splitting of the energy level in the z
direction, all these single particle levels are doubled and
shifted by an energy D. As shown in the insets these
phases obey Hund’s first rule: for a partially filled shell
the total spin is maximized, which is a consequence of the
exchange energy gain. For small interatomic distances the
coupling between the dots is very strong, and they behave
as a single dot, while for large interatomic distances the
system behaves as two decoupled dots. However for
intermediate distances three new molecule-type phases
are found.

The number of new molecule-type phases increases
with the number of electrons. For four, five, and six
electrons one intermediate molecule-type phase is found,
corresponding to the results of Ref. [7]. For seven and
eight electrons two intermediate molecule-type phases
were found. The existence of all these phases can be
understood in terms of the single particle picture supple-
mented with Hund’s rule, including the energy shift D

and the electron-electron interaction, which lifts the de-
generacy of the single particle levels in a shell, to explain
the angular momentum of the state with maximum spin.
For example, the highest filled single particle level for
seven electrons for the case of very small interdot distance
is the �n � 0, l � 2� level. The level �n � 1, l � 0� has
a higher energy caused by electron-electron interaction
due to the large overlap with the filled level with the
same angular momentum �n � 0, l � 0�. This lifting of
the degeneracy creates an extra molecule-type phase for
the case of N � 9, namely, when the interdot distance
decreases the transition from the atomic phase to the
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first molecule-type phase occurs when the electron in the
bonding �n � 1, l � 0� level hops to the lowest antibond-
ing level. A naive use of Hund’s rule would predict that at
the first transition two electrons would hop together to the
lowest antibonding level. But the degeneracy of the single
particle levels in a shell is lifted due to electron-electron
interaction, and the smaller the angular momentum the
larger the energy increase, and as a consequence Hund’s
rule still works.

Although the interpretation of the results in terms of a
single particle picture is natural in the used Kohn-Sham
scheme, it is important to stress that the real levels are
linear combinations of these single particle states.

In Fig. 2 a phase diagram of all transitions up to 13
electrons is presented. Notice that for N � 10 we find
two intermediate molecule-type phases, which is one less
than for the N � 9 case. The reason is that for d � 40 Å
two electrons hop together from bonding to antibonding
levels. In contrast, for N � 11 there are six transitions,
while Hund’s rule predicts the existence of only five tran-
sitions, namely, each time when an electron in a bonding
level hops to an antibonding level. This extra phase can
be understood from the schematic picture of Fig. 3. For
Iz � 7�2 Hund’s rule predicts Sz � 3�2 and Mz � 0 as

FIG. 2. Phase diagram for up to 13 electrons, labeled by the
quantum numbers �Sz , Mz , Iz�. The region between the lines
marks the region of new molecule-type phases. The areas with
dashed lines are the phases for which Hund’s rule breaks down.
The dotted (shaded) areas mark the spin (isospin) blockade
regions.
ground state [Fig. 3(a)]. However at some interdot dis-
tance it is energetically favorable that the electron in the
highest bonding l � 0 level hops to a bonding l � 2
level, resulting in Sz � 1�2 and Mz � 2 [Fig. 3(b)]. The
reason is that this bonding l � 0 and the two filled an-
tibonding l � 0 levels have a large overlap, which in-
creases the level splitting. The exchange energy gain in
the case of three parallel spins is not large enough to
overcome this splitting, which results in this extra phase.
Thus Hund’s rule breaks down in two vertically coupled
dots starting from 11 electrons, while for single dots it
was found [8] that Hund’s rule breaks down starting from
24 electrons.

In the N � 12 case Hund’s rule also breaks down,
but now as the absence of a molecule-type phase near
d � 35 Å where Iz � 4. Hund’s rule predicts the phase
�1, 2, 4�, but we found that �0, 0, 4� has a lower energy. The
physical explanation is the same as for N � 11.

For 13 electrons all molecule-type phases can be pre-
dicted from the single particle picture with Hund’s rule
together with tunneling. The l � 0 electron in the sec-
ond bonding shell in the molecule-type phase �5�2, 0, 5�2�
never hops to a higher angular momentum level in that
shell. The exchange energy gain is now large enough (five
aligned spins) to overcome the level splitting and Hund’s
rule does not break down.

Signatures of the above molecule-type phases can
be measured experimentally through the addition ener-
gies. The addition energy is the energy needed to place
one more electron in the coupled dots, i.e., we calcu-
lated Dm�N� � m�N 1 1� 2 m�N� � E�N 1 1� 2

2E�N� 1 E�N 2 1�. Figure 4(a) shows the addition
energies for the cases of small, intermediate, and large in-
terdot distances, as a function of the number of electrons.
Note that for a small interdot distance (i.e., d � 15 Å) the
peaks at 2, 4, 6, 9, 12, . . . reflect the shell structure of a 2D
harmonic oscillator. For large interdot distances the dots
are decoupled and the magic numbers are doubled, i.e.,
the peaks are observed at N � 4, 8, 12, . . . . These magic
numbers disappear for intermediate interdot distance.

FIG. 3. Single particle pictures for 11 electrons in the case of
Iz � 7�2. (a) is the molecule-type phase as predicted by Hund’s
rule, and (b) is the extra predicted molecule-type phase. Each
level is labeled with the single particle quantum numbers �n, l�.
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FIG. 4. The addition energies as a function of the number
of electrons for three interdot distances. The curves for d �
35 and d � 70 Å are shifted by 2 and 4 meV, respectively.
(b) The addition energies for six and seven electrons as a func-
tion of d and D. The labels at the kinks of the curves indicate
which transition occurs between which two phases and for how
many electrons in the double dot.

How the addition energies change continuously from
these two atomic limit cases is shown in Fig. 4(b) for six
and seven electrons in the system. It shows the addition
energy as a function of the interdot distance. One can
see how the magic number 6 disappears, while the addi-
tion energy for N � 7 increases. This modification of the
shell structure is due to the appearance of new molecule-
type phases and the kinks in these curves correspond to
transitions between these phases. For example, the first
kink occurs at d � 27 Å in both curves Dm�6� and Dm�7�
and it corresponds to the transition between the phases
�1�2, 2, 7�2� ! �1�2, 0, 5�2� for N � 7 electrons. In this
way all kinks are labeled in Fig. 4(b) with the ground state
phases between which the transition occurs, i.e., the quan-
tum numbers and the number of electrons are given. The
flat regions in the addition energy occur when the level
splitting energies D cancel in the calculation of Dm�N�.

The spin blockade condition is jDSj . 1�2. But also in
the case jDSj � 1�2 the Coulomb oscillation peak can be
suppressed if some of these tunneling channels are blocked
which occurs when jDSzj . 1�2 [11]. This condition is
much easier satisfied in two coupled quantum dots than
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in a single parabolic dot. The spin blockade regions are
indicated in the phase diagram of Fig. 2 by the dotted ar-
eas. The same is of course true for the isospin quantum
number for which an isospin blockade may be observed
(shaded areas in Fig. 2). In Ref. [4] the existence of an
isospin blockade region was predicted from an exact di-
agonalization calculation for the transition from N � 3 to
N � 4. This result is precisely reproduced in our SDFT
calculations, which justifies our approach.

In conclusion, we applied spin density functional
theory to describe two vertically coupled quantum dots,
including tunneling. For small and large interdot distances
we recover the atomic phases, while for intermediate
distances new molecule-type phases are found. The
occurrence of the atomic and molecule-type phases can
be understood from Hund’s rule. However, this single
particle picture cannot predict the interdot distances at
which the transitions occur. We also found that Hund’s
rule breaks down starting from 11 electrons in the coupled
dots. The addition energies which can be measured
experimentally in single-electron tunneling experiments
were calculated and the new molecule-type phases should
be observable in these addition spectra. It is also shown
that spin and isospin blockade regions are much more
easily realizable in coupled dots than in single dots.
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