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Scanning Tunneling Microscopy of a Luttinger Liquid
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Explicit predictions for scanning tunneling microscopy (STM) on interacting one-dimensional electron
systems are made using the Luttinger liquid formalism. The STM current changes with the distance
from an impurity or boundary in a characteristic way, which reveals the spin-charge separation and the
interaction strength in the system. The current exhibits Friedel-like oscillations, but also carries additional
modulated behavior as a function of voltage and distance, which shows the spin-charge separation in
real space. Moreover, very close to the boundary the current is strongly reduced, which is an indication
of the interaction strength in the system.

PACS numbers: 71.10.Pm, 61.16.Ch, 71.27.+a, 73.40.Gk
In the past two decades the interest in quasi-one-
dimensional physics has been spurred by experimental
progress in constructing smaller and more refined struc-
tures such as carbon nanotubes, atomic point contacts,
and mesoscopic quantum wires produced by etching [1]
or cleaved edge overgrowth [2]. More recently it was even
possible to produce single atomic chains by depositing
gold on a silicon surface [3].

The theoretical foundation for describing interacting
one-dimensional electrons was laid in the early 80’s with
the concept of a Luttinger liquid (LL) [4]. Interestingly,
the electron-electron interactions cannot ever be neglected
in one dimension which makes those systems fundamen-
tally non-Fermi-liquid-like. The elementary excitations
are described by separate spin and charge quasiparticles
which move at different velocities [5]. The correlation
functions are power laws with exponents that are related
to a single interaction constant g.

Angle resolved photoemission experiments have made
some progress in identifying a possible signature of
spin-charge separation in quasi-one-dimensional com-
pounds [3,6]. On the other hand, in mesoscopic wires
most experiments focus on conductivity measurements
[1,2]. However, from those experiments it is very difficult
to extract information about the fundamental interactions
within the wire. To test the important theoretical concept
of spin-charge separation in mesoscopic systems, other
methods must be considered.

One difficulty in producing a good wire is the fact that
even small impurity perturbations effectively cut the wire
at low temperatures [7]. However, such boundaries give
rise to other interesting effects, which can even reveal the
LL behavior as we will show below. One well-known im-
purity effect in metals is the induced charge density fluc-
tuation at twice Fermi wave vector, the so-called Friedel
oscillation. In the case of carbon nanotubes, the Friedel
oscillations have already been used to show the more com-
plicated electronic structure [8], which stems from a rolled
up two-dimensional graphite sheet.

We now make predictions for a scanning tunneling mi-
croscopy (STM) experiment along a simple quantum wire
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described by the LL model with an open end instead of
leads, i.e., electrons which have been confined to move in
one dimension by clever gating or an appropriate deposit
on a surface. We show that the spatial structure of the tun-
neling current reveals both the spin-charge separation and
the interaction strength in the LL system.

The STM current I is directly related to how many elec-
tron states are locally available in the LL system and in the
tunneling tip. In particular, at position r and for a given
tunneling voltage V , we can write

I�V , r� ~
Z V

0
dv N�v, r�f�v 2 V � , (1)

where N�v, r� is the local density of states (DOS) in the
LL with v measured relative to the Fermi energy, and f is
the DOS in the tip. We do not know the detailed properties
of the tip, but we can assume that f�v� is smooth compared
to the more singular structure of N�v�, so that f � const
is a valid approximation. The DOS of the system is given
in terms of the time-time correlation functions in the LL
at position r:

N�v, r� �
1

2p

Z `

2`
eivt��Cs�r , t�, Cy

s�r, 0��� dt , (2)

where v is measured relative to the Fermi energy. It is
already well understood how to calculate the DOS as a
function of energy v with the LL formalism [5,9], but
as described in this Letter it is the spatial structure as a
function of distance r from a boundary that also explicitly
shows the spin-charge separation.

The LL Hamiltonian describes one-dimensional elec-
trons with short range interactions in the low-temperature
limit below some energy cutoff L. In that limit, the disper-
sion is approximately linear and the electron-electron scat-
tering rate can be taken as momentum independent. The
high energy cutoff L is large compared to the temperature,
but about one magnitude less than the bandwidth for typ-
ical lattice models. The electron field Cs�x� is expressed
in terms of left- and right-moving Fermions at the Fermi
points 6kF :
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Cs�x� � e2ikFxcs
L �x� 1 eikFxcs

R �x� . (3)

We also define the Fermion currents Js
L�R � :c

sy
L�Rc

s
L�R:.

Umklapp scattering is suppressed away from half filling,
and remarkably all forward scattering processes can be
described by expressing the spin and charge currents in
terms of separate bosonic variables fc and fs and their
conjugate momenta Pc and Ps:

J
c�s
L � 1

p
2

�J "
L 6 J

#
L� � 1

p
4p

�Pc�s 1 ≠xfc�s� . (4)

The LL Hamiltonian density is then written as

H �
yc

2 	g21�≠xfc�2 1 gP2
c
 1

ys

2 	�≠xfs�2 1 P2
s
 ,

(5)

which describes two independent bosonic excitations for
spin and charge separately. Because of SU(2) invariance
the spin boson is a free field, but the charge boson gets
rescaled by the LL parameter g which is less than unity
for repulsive interactions.

After the linearization around the Fermi points in
Eq. (3), we can write (omitting the spin indices s)

�C�r , t�Cy�r, 0�� � �cL�r , t�cy
L �r , 0�� 1 �cR�r , t�cy

R �r , 0��

1 ei2kFr �cR�r , t�cy
L �r , 0��

1 e2i2kFr�cL�r , t�cy
R �r , 0�� . (6)
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The last two terms carry a rapid oscillation with twice the
Fermi wave vector 2kFr reminiscent of Friedel oscilla-
tions, while the first two terms are slowly varying. The
tunneling current in Eq. (1) therefore has a rapidly oscil-
lating Friedel part Iosc and a uniform part Iuni with a spatial
dependence that is smooth compared to ei2kFr :

I�V , r� � Iuni�V , r� 1 cos�2kFr 1 f�Iosc�V , r� .

(7)

In a translational invariant system, the left and right movers
are uncorrelated �cLc

y
R � � 0 and we cannot observe any

spatial structure. A generic impurity, however, scatters
left movers into right movers and the resulting correlation
functions depend on the distance r from the end. Such
boundary correlation functions have first been calculated
for the spin channel [10] and later also for the full electron
field [11–13]. We consider an open boundary at the origin
r � 0 of a relatively long system so that N�v� is continu-
ous (the other end of the system is far away and can be
neglected for now). In that case we find the following for
the uniform terms:

�cL�r , t�cy
L �r , 0�� ~

∑
1

a 1 iyst

∏1�2∑
1

a 1 iyct

∏a1b

3

∑
4r2

�a 1 iyct�2 1 4r2

∏c

, (8)

and for the Friedel terms
�cR�r , t�cy
L �r , 0�� ~

∑
1

a 1 i�yst 2 2r�

∏1�2∑
1

a 1 i�yct 2 2r�

∏a∑
1

a 1 i�yct 1 2r�

∏b∑
j2rj

a 1 iyct

∏2c

, (9)
where the exponents are given in terms of the interaction
parameter g:

a � � 1
g 1 g 1 2��8 , b � � 1

g 1 g 2 2��8 ,

c � � 1
g 2 g��8 .

The short distance cutoff a � y�L is small compared to
all other length scales in the system, and we take a ! 01

in all following calculations. The corresponding expres-
sions for left and right movers exchanged can be obtained
by taking r ! 2r.

Let us first consider the uniform part of the current
Iuni as determined by the analytic structure of Eq. (8). A
change of variables t0 � t�r in Eq. (2) and v0 � rv in
Eq. (1) shows that the uniform current Iuni is a function of
the scaling variable rV :

Iuni�V , r� � r2�1�g1g12��4F�rV � , (10)

For noninteracting electrons (g � 1, yc � ys � y) we get
a � 1

2 , b � c � 0 corresponding to a single pole of or-
der one at t � ia in Eq. (8). The integration in Eq. (2)
gives a constant from the residue in the upper half plane;
i.e., the DOS is independent of r and v, and Eq. (1) sim-
ply gives Iuni ~ V for noninteracting electrons. However,
even for small interactions the single pole splits into three
singularities at t � ia and t � 62r�yc 1 ia in Eq. (8).
Close to the boundary the behavior of the Fourier trans-
form in Eq. (2) is then dictated by the large time behavior
of Eq. (8) and we find

Iuni ~ r �1�g2g��4V �1�g11��2 for r , yc�V , (11)

i.e., a characteristic depletion as r ! 0 for repulsive in-
teractions g , 1. On the other hand, far away from the
boundary r ¿ yc�V the behavior is dominated by the
most divergent singularity and we find

Iuni ~ V �1�g1g12��4 for r . yc�V , (12)

which is largely independent of r . However, the inte-
gration of the deformed contour in Eq. (2) around the
branch cuts of the weaker singularities also contributes,
multiplied by a corresponding slowly oscillating “residue
factor” e62irv�yc . This results in an additional slowly os-
cillating contribution with cos�2rV�yc� that drops off with
r �1�g2g28��8. The depletion with the slow oscillations to-
wards a constant current is depicted in Fig. 1 for g � 3�4
from doing the integrals numerically. None of the sin-
gularities in Eq. (8) depend on the spin velocity ys and
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FIG. 1. The uniform current Iuni in arbitrary units as a function
of r for g � 3�4. The inset shows dIuni�dV as a function of
v at a position r.

therefore the uniform current Iuni will not show any signs
of spin-charge separation. Nonetheless, the weaker singu-
larities still give the characteristic slowly oscillating struc-
ture due to interactions.

The effect of the last two “Friedel” terms in Eq. (6),
on the other hand, will reveal the spin-charge separation.
The amplitude Iosc of the rapidly oscillating Friedel current
has the same scaling form as in Eq. (10) but with an even
richer behavior for F. Already for noninteracting electrons
we find a single pole at t � 2r�y 1 ia in Eq. (9) which
results in N�v, r� ~ cos�2kFr 1 2rv�y�. The integra-
tion in Eq. (1) gives a strong r dependence of the ampli-
tude Iosc ~ sin� rV

y ��r (“amplitude modulation”) as shown
in Fig. 2 for g � 1. With interactions we now find four
different singularities at t � ia, t � 62r�yc 1 ia, and
t � 2r�ys 1 ia in Eq. (9). The long-time behavior of
Eq. (9) is the same as for the uniform terms in Eq. (8),
so that we get the same universal depletion for Iosc as
in Eq. (11) very close to the boundary r , ys�V . For
larger distances from the boundary r ¿ yc�V , however,
the dropoff of the Friedel current is determined by the lead-
ing singularity in Eq. (9)

Iosc ~

(
r2�1�g1g12��8V �1�g1g12��8, 1

3 , g , 1

r2�11g��2V �1�g2g��4, g ,
1
3

.

(13)

More importantly, the Friedel amplitude Iosc has an oscil-
lating superstructure from the residue factor of each sin-
gularity. The strong amplitude modulation with sin rV

y has
already been demonstrated for the noninteracting case, but
the ratio of the velocities yc�ys can now be much larger
than one. Therefore, we observe two separate spin and
charge amplitude modulations of Iosc with rV�ys and with
rV�yc, respectively (which are still smooth compared to
the overall oscillation of 2kFr). This behavior is demon-
strated in Fig. 2 for g � 3�4 and yc�ys � 5. The physi-
cal interpretation is that we observe the superposition of
FIG. 2. The Friedel amplitude of the tunneling current in arbi-
trary units as a function of r for g � 1 and g � 3�4, yc�ys � 5.
The inset shows dIosc�dV at a position r with an arbitrarily cho-
sen phase ei2kFr � 1.

all electron wave functions in the energy range from 0 to
V which exhibits the spin-charge separation due to the in-
terference from the boundary.

We have shown that the spatial electronic structure of an
LL indeed shows the signatures of the spin-charge separa-
tion, but it is important to critically analyze to what extent
this could be observed in a realistic STM experiment. As
an example, we consider the monatomic gold chains on a
slanted silicon surface Si�111�-Au�5 3 1�, which showed
the signature of LL behavior in photoemission experiments
[3]. The spin-charge separation seems to be present for all
excitations over the entire bandwidth (ca. 1 eV), but, to ob-
serve the particular STM structures that we predict here,
the voltage has to be below the cutoff L which is about
0.1 eV for this system. The most easily observable feature
in an STM experiment is probably the depletion of the
tunneling current as a function of distance near the bound-
ary. The range of this depletion is given by r � yF�V ,
where yF � 6 3 105 m�s for the gold chains, so that for
V , 100 meV the range is at least r * 40 Å. Already
from the shape of this depletion an approximate estimate
of g can be made from Eq. (11). Second, it is important to
analyze the Friedel oscillations, which is a more difficult
task. For the gold chains the Fermi vector is kF � p�2a
with an interatomic spacing of a � 3.83 Å, so that the
2kFr oscillations are commensurate with the lattice. This
makes the Friedel oscillations easier to detect, but the small
amplitude modulations in Fig. 2 may not show up very
clearly. The Friedel amplitude is modulated by at most
30% by the charge waves, while the spin modulations are
even smaller. The spin modulations are actually weaker
for stronger interactions (about 10% for g � 1, but only
1% for g , 1�2). Nonetheless, even if only a small hint
of those superstructures shows up in an STM image, it
should be possible to track those modulations for differ-
ent voltages. This will change their period systematically
and may make it possible to identify them unambiguously.
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Interestingly, the total modulation is much stronger with-
out any spin-charge separation �g � 1�, so if it cannot be
observed at all it would also be an indication of interac-
tion effects. For larger voltages V . L it is more instruc-
tive to look at the total density of electrons given directly
by Eqs. (8) and (9) in the limit t ! 0, which recovers
the established dropoff of the Friedel terms with r2�11g��2

[11,14], but without any spin-charge modulations.
The measurement of dI�dV as a function of voltage

in an STM experiment (spectral mode) will give addi-
tional information about the local DOS. Close to the
boundary dI�dV has considerable structure as indicated
in the insets of Figs. 1 and 2. The additional contribution
dIosc�dV from the Friedel terms in Fig. 2 is smaller and
depends on the choice of phase ei2kFr , but shows the sepa-
rate spin-charge effects very clearly. The gold chains men-
tioned above showed a surprisingly strong depletion of the
spectral weight at the Fermi surface as a function of energy
in photoemission experiments [3]. It would be interesting
to see if STM experiments on the very same samples also
show such a strong depletion of the DOS with a character-
istic power law V 2b .

One approximation we made is that the DOS in the tip
f�v� is relatively smooth, which is not too restrictive since
the observed structures in Figs. 1 and 2 can be reproduced
for almost all forms of f�v� as long as there is a sharp
upper limit at V in the integral of Eq. (1). It is also possi-
ble to average over both signs of the voltage to eliminate
the DOS of the tip somewhat, since the anticommutator
in Eq. (2) gives the same singularities for t ! 2t; i.e.,
N�v� � N�2v�.

The distance from the tip to the sample is also impor-
tant, since the tip may influence the system and play the
role of an impurity itself. The optimal distance can be de-
termined in the actual experiment by operating in spectral
mode somewhere in the bulk of the wire. If the dI�dV
curve changes qualitatively as the tip-sample distance is
decreased (except for an overall scale), then this would be
a clear sign that the tip influences the sample. In particular,
if the tip starts to act as an impurity the dI�dV curve should
show a stronger depletion with the power law V �1�g21��2

as V ! 0.
So far we have considered only a perfectly reflecting im-

purity, because it is expected that any generic perturbation
renormalizes to the open boundary fixed point [7]. How-
ever, in an intermediate range around a “weaker” impurity
the Friedel effects show a nonuniversal behavior described
in terms of a form factor [14]. The range of this so-called
boundary layer shrinks to zero for a perfectly reflecting
barrier. Also interesting are “active” impurities that have
a net magnetic moment or carry an electric charge. In
the presence of interactions those impurities may be over-
screened; i.e., the nearest electrons overcompensate for the
impurity charge or spin and in turn get screened by the
next-nearest neighbors, etc. This finally results in a screen-
ing cloud which is also a 2kFr effect, since the impurity
Hamiltonian Himp induces a nonzero expectation value in
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the Friedel terms of Eq. (6); i.e., �cLc
y
RHimp� fi 0. The

presence of both backscattered and induced Friedel terms
has recently been demonstrated for a two-channel Kondo
impurity [15].

Finally, we must also consider the effect of a second
boundary in a finite system at r � L. The correlation
functions in Eqs. (8) and (9) are then described by powers
of sine functions sin pyt

2L [11,13]. We expect that the spa-
tial structure from the interference of the standing waves
gives a similar picture as in Figs. 1 and 2 close to the
boundaries as long as V ¿ py�L. However, a more dra-
matic finite size effect is a discrete spectrum N�v� due to
the appearance of d functions in Eq. (2). This results in
Coulomb-blockade-like charging steps in I�V �, which can
also reveal the spin-charge separation and the interaction
strength in the LL [13].

In conclusion, we have shown that the tunneling current
has decaying Friedel-like oscillations in a range around
a boundary, but additionally the Friedel amplitude carries
a characteristic periodic modulation in real space which
reveals the separate spin and charge parts of the electron
wave functions. The period of those modulations is a
function of the tunneling voltage, which is assumed to be
small. We also find a characteristic depletion very close to
the boundary of both the Friedel current and the uniform
current, which is immediately related to the interaction
constant in the wire.
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