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Polydispersity Exponent in Homogeneous Droplet Growth
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The homogeneous growth of D-dimensional hyperspherical droplets on a d-dimensional surface pro-
duces a bimodal distribution in the sizes of the droplets, with a roughly monodispersed distribution of
larger droplets superimposed on a highly polydisperse distribution of smaller ones. The polydisperse
regime is characterized by an exponent, which also determines the total droplet density. The exponent
is evaluated, and it is deduced that d � 3 represents an upper critical dimensionality.

PACS numbers: 81.15.Aa, 02.50.– r, 68.55.–a
The condensation of droplets on a surface and their sub-
sequent coalescence and growth is a basic process in a
large class of phenomena in both nature and materials sci-
ence [1]. The characteristic pattern of droplets that evolves
when water condenses on a cold surface (breath figures)
has been well studied [2–5]. Related patterns are seen
in the late stage of vapor deposition of thin films [6–14],
surfactant limited aggregation of hydrophobic molecules
in water [15], and in flyash formation during pulverized
coal combustion [16].

A decade ago, Family and Meakin [7,8] introduced a
model that contained the essentials of droplet growth. The
model consists of hyperspherical droplets with dimension-
ality D. When a droplet of radius r1 overlaps a droplet
of radius r2, a new droplet is formed with radius r given
by r � �rD

1 1 rD
2 �1�D . Two models were proposed for

coalescence and growth on a d-dimensional surface. In
the heterogeneous model, there are a fixed number of de-
fect sites on the substrate, and growth occurs by condensa-
tion of vapor at these sites, with coalescence taking place
when neighboring droplets overlap. For homogeneous nu-
cleation, new elementary droplets of radius r0 are intro-
duced randomly onto the surface at a constant rate. There
is no mobility in the model, and so the focus is entirely on
the process of growth through coalescence.

Scaling behavior is observed in these systems, and there
have been a number of theoretical treatments [7,8,17–26].
With heterogeneous nucleation, the particle size distri-
bution displays a single peak, and this case is rather
well understood. In contrast, the homogeneous model
exhibits a bimodal size distribution, but the theoretical
understanding is as yet incomplete. Bimodal distributions
have been observed in a number of experimental situations
[5,6,10,12,14,15]. This paper addresses the homogeneous
model. The bimodal distribution comprises a roughly
monodispersed distribution of larger droplets superim-
posed on a highly polydispersed distribution of smaller
droplets. The behavior of the growth is a delicate balance
between the larger and the smaller droplets. The larger
droplets determine a characteristic length scale for the
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process, while the total droplet density is determined by
the much larger number of polydisperse smaller droplets.

The polydispersity is expressed in terms of an exponent
t, such that the number of islands of size s is given by
Ns � s2t . Currently numerical values of t are estimated
by computer simulations, but to our knowledge no analytic
expressions are available. The object of the present work
is to provide for the first time an analytic evaluation of this
exponent.

We begin by summarizing what is known about the
scaling properties of the model. The size distribution for
droplets of size s at time t can be written in the usual scal-
ing form

Ns�t� � s2uf���s�S�t���� , (1)

where S�t� is the mean cluster size. The bimodal distri-
bution is expressed explicitly by writing the scaling func-
tion as

f�x� � xu2tg�x� 1 h�x� , (2)

where h�x� represents the large droplet peak, and the other
term describes the smaller droplets, with g�x� varying
slowly with x. It is useful to define moments of the distri-
bution function

Mn �
X

s
snNs�t� , (3)

where n is an arbitrary real number. Two more exponents
z and z0 are introduced to describe the time evolution of
the mean cluster size S�t� and the cluster density N�t�,

S�t� � M2�M1 � tz , (4)

N�t� � M0 � t2z0 . (5)

The moments can be evaluated from Eqs. (1)–(3). For
small values of n, the lower limit of the summation domi-
nates and this leads to the result

Mn � tz�n2u11� if n $ t 2 1 ,

� tz�t2u� if n # t 2 1 . (6)
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The constant deposition rate, implying that M1 � t gives
the standard result z�2 2 u� � 1. The fractional coverage
C is proportional to Md�D for D-dimensional hyperspheres
on a d-dimensional surface. Now C approaches 1 in the
asymptotic time limit provided D . d. If D � d com-
plete coverage occurs after a finite elapse of time. From
Eq. (6), Md�D approaches a constant value if

u � 1 1 d�D (7)

with the requirement that d�D $ t 2 1, or t # u. Hence

z � D��D 2 d� . (8)

For all cases [8], t $ 1, and so

z0 � z�u 2 t� . (9)

An important feature that will emerge is that the key
rate determining quantities scale with the cluster density
N . The first is the fractional coverage C for which we can
write �1 2 C� � N . This is illustrated in Fig. 1, which
shows results from simulations for the d � 2, D � 3 case.
We can understand the scaling with N as follows. In
the simplest case (d � 1), the number of gaps between
droplets is equal to the number of droplets, N , while the
mean gap size can be shown to remain constant throughout
the scaling regime. This invariance stems from the fact that
the length scale determining the distribution of gap sizes
is the fixed quantity 2r0. The fraction of uncovered sur-
face, (1 2 C), varies as N , therefore. At low surface cov-
erage, there is a single length scale in the problem, namely,
S�t� while, in the coalescence regime, there are two char-
acteristic lengths, S�t� and 2r0. The above argument can
be extended to arbitrary surface dimensionality. For ex-
ample, for d � 2, the droplets are closely packed with a
separation determined by 2r0. The free surface area will
scale, therefore, as the mean circumference of the droplets
on the surface. Generalizing to arbitrary d and D, the free
surface area scales like M�d21��D , which in turn scales like

FIG. 1. Simulations of D � 3 droplet growth on d � 2 square
surface of side 1400r0 with periodic boundary conditions. N and
�1 2 C��N are shown as functions of time (number of Monte
Carlo steps).
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N if 1 1 �d 2 1��D # t. The values of t that we shall
derive satisfy this condition.

Scaling behavior in these systems occurs at fairly high
coverages, and we need to consider which are the dominant
processes in this regime. When a new droplet is added, the
following possibilities occur:

(1) The droplet falls on the free surface without touching
an existing droplet.

(2) The new droplet falls on an existing one whose radius
increases as a result of the coalescence. There are then
two possibilities: either (a) the expanding droplet does not
touch another one, or (b) it does touch another resulting in
a further coalescence.

(3) The droplet falls so as to bridge two clusters that are
close together causing them to coalesce. This process is
rare during the early stages of growth, but it plays a major
role in this regime.

(4) There are other possible scenarios; both cases 2(b)
and 3 could result in further coalescences. It is found from
simulations that such cascade processes almost never occur
for d � 1. They do take place for d � 2, however, and
often quite dramatically. We include all cascade processes
in category 4.

The number of droplets on the surface increases by 1
in process 1, decreases by 1 in processes 2(b) and 3, and
does not change in case 2(a). In the fourth case, there is
a decrease in the number, which is 2 or greater. Let us
denote the number of droplets that have been created or
destroyed by each of the processes up to time t as n1, n2b ,
n3, and n4, so that the total droplet density N is given by

N � n1 2 n2b 2 n3 2 n4 . (10)

Similarly, the change in surface coverage since the start of
the deposition can be tracked separately for each process.
There is an increase in cases 1 and 2(a), and a decrease
with 2(b), 3, and 4, so that, in an obvious notation

C � c1 1 c2a 2 c2b 2 c3 2 c4 . (11)

The individual contributions to the droplet density and sur-
face coverage were obtained from simulations, and their
time derivatives deduced. With subscript a denoting the
process (excluding a � 2a for the number count), and us-
ing a dot over the symbol to indicate a time derivative, we
find that all the quantities scale with the droplet density.

�na � �ca � N . (12)

The results for d � 2, D � 3 are plotted in Figs. 2 and
3, and similar behavior was observed in simulations on
d � 1, D � 2 systems. In view of Eqs. (10) and (11),
this leads to rate determining conditions

�n1 2 �n2b 2 �n3 2 �n4 � 0 (13)

and

�c1 1 �c2a 2 �c2b 2 �c3 2 �c4 � 0 , (14)
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FIG. 2. Plots of �na�N against time for same system as Fig. 1;
a labels type of process.

where �0 implies zero to order N . The growth is deter-
mined by a dynamic balance between these processes and,
furthermore, examining the conditions by which Eq. (12)
is satisfied provides us with a means of determining the
exponent t.

Since the fraction of surface unoccupied by droplets is
(1 2 C), the probability that a new droplet will land on
the surface and not coalesce will also scale like (1 2 C),
that is, like N , and so �n1 � N . Because the change in
surface coverage due to such a process is just the footprint
for an isolated droplet, �c1 � N . The a � 1 case satisfies
Eq. (12) trivially therefore.

The 2(a) case is less trivial. The probability that a new
droplet impinges on an island of radius r scales as rd . The
resulting increase in area is rd21dr , where the increment
in radius is dr � r2�D21�. As a result �c2a � M�2d2D��D .
If this is to scale like N , Eq. (6) imposes the condition
t $ 2d�D.

FIG. 3. Plots of �ca�N against time for same system as Fig. 1;
a labels type of process. For clarity, the plots for 1 and 2(a)
have been shifted upward by 0.5 and 0.25, respectively.
For case 2(b), we need to evaluate the probability that a
droplet lands on an island of radius ri , which then expands
and overlaps a second island of radius rj . The probability
for d � 2 and D � 3 is proportional to �ri 1 rj�NiNj�N .
A straightforward generalization to arbitrary dimensions
yields

�n2b � N21
X

i,j

�i1�D 1 j1�D��d21�

3 �i�d112D��D 1 j�d112D��D�NiNj . (15)

An expression similar (but without the N21 prefactor)
to Eq. (15) for the d � 2 case has appeared in earlier
work [17,22,23]. The expression used in previous work
is correct for the early stages of growth. However, in the
coalescence regime, droplets are tightly packed with the
characteristic length scale, 2r0, determining their close-
ness. We have to use the probability (�Nj�N) that an adja-
cent droplet has radius rj , rather than, as in the early stages
of growth, the probability (�Nj) that the droplet is there
at all. The expression for �c2b is similar to Eq. (15), but
with an extra factor id�D 1 jd�D 2 �id�D 1 jd�D� within
the summation.

Using the scaling forms from Eqs. (1) and (2), one
can show that time evolution of �n2b scales as tz�t2u� or
tz�2d�D112t2u� according, respectively, to whether small
or large sizes are more important in the double summation
in Eq. (15). For the first to dominate so that �n2b � N ,
we require that t $ d�D 1

1
2 . A similar consideration of

�c2b leads to the condition t $ 3d�2D 1 1
2 .

The probability that an impinging droplet bridges a pair
of islands of radii ri and rj is needed for case 3. For d � 2
and D � 3, this probability is proportional to �rirj�ri 1

rj��1�2NiNj�N , which can be generalized to

�n3 � N21
X

i,j

�i1�Dj1�D�i1�D 1 j1�D���d21��2NiNj .

(16)

For �c3, the extra factor is included in the summation as for
the previous case.

Following a similar procedure to case 2(b), the condi-
tions we need to satisfy if �n3 and �c3 are to scale like N
are, respectively, t $ 3�d 2 1��4D 1 1 and t $ �5d 2

3��4D 1 1.
The conditions that dominate are t $ 3d�2D 1 1

2 if
D # Dc, and t $ �5d 2 3��4D 1 1 if D $ Dc, where
Dc � �d 1 3��2. Examination of the case 4 cascade ef-
fects shows that their incipient processes [2(b) or 3] domi-
nate their time dependences. The conditions just noted will
also ensure that case 4 processes scale with N .

We consider the two limits D ! ` and D ! d where,
respectively, u ! 1 and u ! 2. The two expressions for
t are consistent with the condition u $ t in these limits
only if the equality rather than the inequality is used. We
assume that the equality applies throughout the range of
4411
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TABLE I. Comparison of t and z0 from Eqs. (17) and (18)
with results from Family and Meakin (FM) simulations [8].
There appears to be a typographical error in Table I of [8].
Values (*) are from Figs. 10 and 11 of Ref. [8].

d D z (FM) z t (FM) t z0 (FM) z0

1 1.5 2.94 3.00 1.48 1.50 0.51 0.50
1 2 1.97 2.00 1.25* 1.25 0.49* 0.50
1 3 1.47 1.50 1.18 1.17 0.27 0.25
1 4 1.28 1.33 �1.25 1.13 0.18 0.17
1 8 1.10 1.14 �1.12 1.06 0.079 0.071
2 3 2.92 3.00 1.54 1.58 0.26 0.25
2 4 1.84 2.00 1.45 1.44 0.195 0.125
2 8 1.26 1.33 �1.25 1.22 0.083 0.042

dimensions leading to the final result,

t �
3d
2D

1
1
2

, if D # Dc ,

�
5d 2 3

4D
1 1 , if D $ Dc . (17)

The corresponding expressions for z0 are

z0 �
1
2

, if D # Dc ,

�
3 2 d

4�D 2 d�
, if D $ Dc . (18)

A selection from the computer simulation results of
Family and Meakin [8] is listed in Table I. For d � 1,
the agreement is excellent for all D. In particular, the pre-
dicted value z0 � 1

2 is reproduced for D # Dc (Dc � 2
for d � 1).

For d � 2, the D � 3 case is perhaps of most interest.
The agreement for both t and z0 is again excellent. At
higher values of D, the agreement between simulations
and the current theory remains very reasonable for t, but
deteriorates for z0. The reason for this is the excessive
time required in the simulations to reach the asymptotic
limit where the scaling relations apply exactly. The degree
to which Eqs. (8) and (9) are satisfied is a measure of how
closely a simulation has approached the scaling regime.

For one and two dimensional substrates, the current the-
ory gives an excellent account of the polydispersity behav-
ior, and any discrepancies with the results from simulations
can be fully accounted for by the difficulty for simulation
in attaining the asymptotic regime.

We conclude with some comments on three dimensional
substrates. For this case, Dc � 3 and, since D . d, t �
1 1 3�D and z0 � 0. Hence t � u for all values of D.
Simulations [8] are unable to distinguish t and u, and
report very small values of z0. Within the limitations of
simulations, already noted, there is consistency with the
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present theory. An exponent of zero deduced from scaling
theory usually implies logarithmic terms. Since the theory
yields a value of z0 of zero, we infer that N approaches zero
logarithmically. In turn this implies that d � 3 is the upper
critical dimensionality for the droplet growth process. We
have also done simulations for d � 4, D � 5 and found
that z is in the range 4.6–4.8 which is, within error limits,
in agreement with the prediction of 5 from Eq. (8). The
basic scaling hypothesis is still applicable therefore, but
the details of the polydispersity will be different for d .

3. We will report on these matters more fully elsewhere,
together with a more detailed study of the d � 1 and d �
2 cases.

This work was performed when one of us (S. B.) was a
Visiting Scientist at the University of Reading.
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