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Radial-Fluctuation-Induced Stabilization of the Ordered State in Two-Dimensional
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Melting of two-dimensional (2D) clusters of classical particlesis studied using Brownian dynamics and
Langevin molecular dynamics simulations. The particles are confined either by a circular hard wall or by
a parabolic external potential and interact through a dipole or a screened Coulomb potential. We found
that, with decreasing strength of the interparticle interaction, clusters with a short-range interparticle
interaction and confined by a hard wall exhibit a reentrant behavior in its orientational order.

PACS numbers: 64.60.Cn, 83.20.Hn

The structural and dynamica properties of small clas-
sical two-dimensional (2D) clusters have been the subject
of recent experimental studies [1-3] and Monte Carlo and
molecular dynamics simulations [4-9]. It was found ear-
lier that the particles are arranged in shells and that melting
of finite clusters is a two step process. With increasing
temperature, intershell motion develops and the system
loses angular order.  Consecutively, radia diffusion
switches on and destroys the shell structure of the cluster.
The spectrum of such clusters was obtained in Refs. [6,7]
for different number of particles. The derived minimal
frequencies and the corresponding energy barriers showed
that “non-close-packed” clusters are unstable against
intershell rotation. High symmetry clusters (i.e., the
so-called magic number clusters) have energy barriers for
intershell motion which are severa orders of magnitude
larger than those for non-close-packed clusters.

Recently, Bubeck et al. [3] observed reentrant meltingin
two-dimensional (2D) colloidal clusters. The clusters con-
sist of paramagnetic colloidal sphereswhich were confined
inacircular hard wall vessel. The external magnetic field
induces a magnetic moment M in the particles and they in-
teract through adipole potentia V (7;, 7;) = poM?/4rr}),
where u is the magnetic permittivity, and r;; is the inter-
particle distance. The coupling parameter, which is the
interparticle interaction energy measured in units of the
particle kinetic energy I' = V /kpT, characterizes the or-
der of the system. It decreases by lowering the external
magnetic field. In Ref. [3] it was found that, with decreas-
ing I, first intershell rotation appears which destroys the
angular order of the cluster. Further decreasing the pa-
rameter I", the system unexpectantly regained angular or-
der within a narrow range of I" and then melts when T"
is further decreased. It was suggested that the observed
reentrant melting behavior is due to the increasing role of
the radia particle fluctuations which is similar to an ear-
lier investigation of laser induced melting of 2D colloidal
crystals [10,11].

Earlier theoretical work [5] on parabolic confined clus-
ters did not find such a reentrant behavior which sug-
gests that the shape of the confinement potential may
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be very important. Another difference is that in the ex-
perimental system the particle motion is strongly damped
because the colloidal particles move in water. In the
present paper we investigate the mechanism for the reen-
trant behavior and address the specific role played by
the type of confinement (i.e., hard wall versus parabolic)
and of the functional form of the interparticle interac-
tion (short range versus long range) on the melting of the
clusters.

In our model the particles are confined by acircular hard
wall potential (V, = 0forr = RandV, = xa r > R)
or by aparabolic potential V,, = ar?. The particlesinter-
act through a dipole potential V (7, 7;) = ¢*/|7: — F7;I?,
where g> = woM? /44, or through a screened Coulomb
potential V(7. 7;) = (¢*/17 — 7] exp(—«lF; — 7)),
where ¢ isthe “particle charge,” 7; isthe coordinate of the
ith particle, and 1/« is the screening length where x =
0 for a Coulomb cluster, and we took « = 2/aq for the
screened Coulomb cluster where ay is the mean interpar-
ticle distance. For a given type of interparticle interaction
and external confinement, only two parameters character-
ize the order of the system: the number of particles N and
the coupling parameter I'. We define the characteristic en-
ergy of interparticle interaction for dipole clustersas Ey =
¢*/ay and Ey = ¢*/ay for screened Coulomb clus-
ters, where ay = 2R/N'/? for the hard wall and ay =
g*>a~'/> for parabolic confinement. In the present calcu-
lation, we define the coupling parameter as I' =
q*/aksT for dipole clusters and T = (42/
aokpT)exp(—kay) for screened Coulomb clusters.
In [3] a different dimensionless parameter I" was intro-
duced, where V was taken to be the sum over all pairs of
particles. Our coupling parameter I" is a factor 2.2447
smaller than the one of [3] for N = 29.

The ratio of the particle velocity relaxation time ver-
sus the particle position relaxation time is very small due
to the viscosity of water and therefore the motion of the
particles is diffusive. In our simulations we will neglect
hydrodynamic interactions. Following [12] we rewrite the
stochastic Langevin equations of motion for the position
of the particles as those for Brownian particles:
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where D, is the self-diffusion coefficient, m is the
particle mass, and F is the randomly fluctuating force
acting on the particles due to the surrounding media. In
the numerical solution of Eq. (1) we took a time step
At = 107%/(nDy), where n = N/(wR?) is the particle
density and Ar was varied within a range (0.02-0.05) s.
The radius of the circular vessel R = 36 um and the
self-diffusion coefficient Dy = 0.35 um?/s are taken
from the experiment [3]. Following Ref. [3] we consider
dipole clusters consisting of N = 29,30,34 particles
which have different types of packing. In the ordered
state the systems of N = 29, 30 particles are arranged in a
triangular “closed-packed” structure having, respectively,
the shell structure (3:9:17) and (3:9:18) and ground-state
energy E = 2.2447E, and E = 2.2798Ey. The cluster
with N = 34 particles (4:11:19) E = 2.4198E, has a
non-close-packed structure.

We find first the ground-state configuration using the
Monte Carlo (MC) technique. Our results for the mini-
mal energy configuration coincides exactly with the energy
found in [5] for Coulomb clusters. In the experiment [3],
the system was first equilibrated and after that the particle
trajectories were recorded during 30 min. In the simula-
tion, we equilibrated the system for about (5 X 10°-10°)
MC steps after which we started with the statistical av-
eraging over time of the different observables. To obtain
reliable results with small statistical error, we follow the
particle trajectories typically during 107 time steps.

We calculated the time dependence of the mean angu-
lar displacement of the particles in a specific shell 6(¢) =
Zﬁv;l [0;(r) — 6;(0)]/Ny, where 6;(¢) is the angular posi-
tion of the ith particle and N, is the number of particlesin
the shell. In Fig. 1 the angular displacements of the par-
ticlesin the first shell (the most inner) and the second shell
are given as functions of time for the cluster of N = 29
particles. The angular motion in the third shell is very
small because its motion is hindered by the hard wall. No-
tice that both the first (thick curve) and the second (thin
curve) shells take part in the angular motion, but the for-
mer rotation is more prominent. The intershell motion has
no preferential direction and with time it can be either a
clockwise or a counterclockwise rotation. With decreas-
ing coupling parameter I" intershell rotation becomes more
pronounced.

In order to characterize the order of the system, we
calculate the angular diffusion of the particles over a
30 min X 1000 time interval. The angular diffusion
coefficient can be written as

Dy = [(A6(1)*) = (A6(1))*]/1, @)

where () refers to a time averaging, and the mean rela
tive angular displacement rotation of the first shell [(¢)]
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FIG. 1. The angular displacement of the particles on the first
(thick curves) and second (thin curves) shell for a cluster with
N = 29 particles for different values of the coupling parameter:
@I =150,(b) ' =46,(c) ' = 10,and (d) I = 3.

relative to the second [#2(¢)] one is defined as A6(r) =
0'(r) — 62(¢). The variance of the distribution function of
the radial coordinates is

N
AR? = = S TP — i0PVad, @
i=1

which is a measure of the radial order in the system.

In Fig. 2 the angular diffusion coefficient and the radial
variance are shown for three different dipole clusters with
hard wall confinement subjected to the same conditions as
in the experiment [3]. For the cluster with N = 29 par-
ticles, the angular diffusion [solid dotsin Fig. 2(a)] mono-
tonically increases with decreasing coupling parameter up
to I' ~ 30 which is a manifestation of angular melting.
Intheinterval I' = 10-30 theintershell diffusion remains
practically constant, and with further decreasing I it isre-
duced to about a 20% smaller value. In the latter region
the radial fluctuations start to rise [open dotsin Fig. 2(a)],
but the cluster retains its shell structure. In the range
3 < I'" < 8 the cluster oscillates between the ground state
(3:9:17) and the metastable state (4:8:17) which leads to
a reduction of the angular fluctuations. Further decreas-
ing the coupling beyond I' = 5 both D, and AR? rises
quickly, indicating the onset of melting. A similar quali-
tative behavior was observed for the dipole cluster with
N = 30 particles [see Fig. 2(b)]. In the non-close-packed
cluster with N = 34, intershell rotation occurs over all
I'"s considered in the experiment [see Fig. 2(c)] and no
clear regaining of angular order is found in the region
3<T <8.

In order to abtain further insight into this reentrant be-
havior, we investigated the conditions under which this
novel effect can be observed. Therefore, we varied the
following parameters. (i) the viscosity of the medium the
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FIG. 2. Theangular diffusion coefficient D, (solid circles) and
the variance of the distribution function of the radial coordinates
(AR?) (open circles) coefficients as a function of T" for clusters
with (@) N = 29, (b) N = 30, and () N = 34 particles. The
squares in (b) are D, for the case of small viscosity.

particles are moving in; (ii) the range of the interparticle
interaction; and (iii) the form of the confinement potential.
To study the melting behavior of the cluster under the
condition of low viscosity with hard wall confinement,
we performed Langevin molecular dynamics simulations.
The Langevin equations for the system of N interacting

particles are
dz;,' dr,

= —yp— +
dt? Yt

3 |
3|

+

: 4)

where v = kgT /mDy is the friction, and Ij“,» is the force
from the interparticle interaction. As an example, we con-
sider N = 30 dipole particles moving in a medium with a
viscosity which is 10* times smaller than the one of wa-
ter. Such alow viscosity corresponds to the situation of
colloidal particles moving in a gas with pressure 1 Pa. In
Fig. 2(b) theangular diffusion coefficient (squares) is plot-
ted as function of I'. Note that now Dy is about a factor
10* larger as compared to the previous case [see Fig. 2(b)].
Itisclear that changing viscosity does not destroy the reen-
trantlike behavior but changes only the time scale for re-
laxation to equilibrium.

Next we investigated whether the type of interparticlein-
teraction influences the occurrence of reentrant behavior.
We consider a cluster with long-range Coulomb interac-
tion [N = 37 (3:9:25) having the same internal structure
asthe N = 30 dipole cluster] with hard wall confinement
using Brownian dynamics (1). In Fig. 3(a) the angular and
radial diffusion coefficients are shown as a function of T'.
Notice that the Coulomb cluster shows completely differ-
ent melting behavior and D4 increases monotonically with
decreasing I'. Meélting takes place at I' ~ 40. Next we
consider short-range interparticle interaction, and as an ex-
ample we took the screened Coulomb cluster (« = 2/ag)
with N = 30 (3:9:18) particles. In Fig. 3(b) the angular
diffusion and radial variance are shown as a function of
the coupling. Dy exhibits a clear reentrant behavior which
correlates with an increase of the radial diffusion. Thus
we may conclude that only clusters with short-range in-
terparticle interaction in a hard wall vessel show reentrant
behavior.

Last we study the effect of the shape of the confine-
ment potential and consider the melting behavior of a clus-
ter with short-range interparticle interaction in a parabolic
well. We choose the N = 25 dipole cluster (3:9:13). Fig-
ure4 shows the angular diffusion and the radius of the
cluster as a function of I'. Dy clearly does not exhibit
a local minimum, it rises uniformly with decreasing T’,
and melting occurs for I' = 5, asin the case of hard wall
confinement. The radius of the cluster R and the mean in-
terparticle distance changes proportionally to I'!/2.

In conclusion, we studied the melting transition of 2D
clusters with dipole and screened Coulomb-type interac-
tion confined by a hard wall or a parabolic external po-
tential using Brownian dynamics simulations. Langevin
molecular dynamics simulations were carried out in the
case of small viscosity. We found that only clusters with
short-range interparticle interaction and confined by a hard
wall well exhibit angular freezing before melting, irrespec-
tive of the value of viscosity. In the other cases, either of
Coulomb clusters or with parabolic confinement, the sys-
tem shows the usual [5] two step melting behavior without
any reentrance.

We showed that reentrant behavior is a consequence of
the interplay between angular order and radial oscillations
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FIG. 3. The angular diffusion coefficient (solid circles) and
the radia variance (open circles) as a function of I for (a) the
Coulomb cluster with N = 37 particles, and (b) the screened
Coulomb cluster with N = 30 particles confined by a hard wall
potential.

where an increase of the radial fluctuations is able to in-
duce angular order in clusters with magic number. With
decreasing I', first angular motion setsin, becauseit isgov-
erned by the lowest energy barriers. Further decreasing I
leadsto an increase of the radial motion/fluctuationswhich
hinder the angular motion. The latter prevents angular mo-
tion in case of hard wall confinement. But for parabolic
confinement the average interparticle distance (see Fig. 4)
decreases which results in a change of the energy barriers
for intershell and intrashell motion. This contrasts with
the hard wall confinement case where the interparticle dis-
tances are unaltered and the energy barrier for intershell
jumps decreases leading to an increase of the radia fluc-
tuations and of intershell jumps. Thus anharmonic effects
are essential for the occurrence of this reentrant behavior
which is enhanced in systems with hard wall confinement
and for short-range interparticle interaction.
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FIG. 4. The angular diffusion coefficient (solid circles) and
radius of the cluster (open triangles) as a function of T" for a
N = 25 dipole cluster in a parabolic well.
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