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Spiral Structures in Magnetized Rotating Plasmas
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A theory of spiral structure formation has been formulated to show that spiral structures are rather
basic entities in magnetized rotating plasmas subjected to various types of instabilities such as collisional
drift wave instability, flute mode instability due to centrifugal force, and Kelvin-Helmhotz instability.
The characteristic features of spiral structures observed experimentally in electron cyclotron resonance
plasmas are reproduced by our theory.

PACS numbers: 52.30.–q, 52.35.Kt, 52.35.Py
Self-organized structures in magnetized plasmas have
been a topic of interest because they may give a deep in-
sight into self-organization in complex systems as well as
transport phenomena in plasmas. Coherent structures have
been recently observed in laboratories [1–6] and are sub-
jects of theoretical analysis for understanding underlying
physics [7]. In both electron cyclotron resonance (ECR)
plasmas [4] and gun-produced plasmas [5], two-arm
spirals are commonly observed, and in particular the
spiral structure observed in the ECR plasmas have inter-
esting features: (1) the stationary structure is observed in a
certain range of the background pressure, (2) the direction
of the arm stretching is reversed when the magnetic
field is reversed, and (3) the arm winding is identified as
an Archimedian spiral, that is, the curve spiraling into
the origin which in polar coordinates is given by the
equation r ~ u.

In the ECR plasmas, the ratio of the ion-neutral colli-
sion frequency to the ion cyclotron frequency is small as
ni�Vi � 0.05, and the azimuthal rotation due to E 3 B
drift, which is ��0.2 0.4�Cs (Cs: ion acoustic velocity),
dominates the radial drift due to collisions. Furthermore,
the ratio of the nonlinear term to the Lorenz force term
Cs�rdVi is as small as ni�Vi , where rd is the plasma
radius. Thus, we can deal with the problem of spiral for-
mation using the linear approximations.

In this Letter, we show that low frequency perturba-
tions (v ø Ve, Ve: electron cyclotron frequency) in an
azimuthally rotating plasma may develop into spiral struc-
tures, which, in particular cases, are stationary. Instabili-
ties such as the collisional drift wave instability, centrifugal
instability, and Kelvin-Helmholz instability are taken into
account, and the linear eigenvalue problem for the per-
turbed potential is numerically solved to show the exis-
tence of spiral solutions.

The spiral structures in the gun-produced plasmas [5],
in which ni is comparable with Vi , and the ion azimuthal
flow is supersonic, will be discussed separately since full
nonlinear treatment is required because of no smallness
parameters.
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Plasmas in a cylindrical vessel are inevitably driven to
rotate with the E 3 B drift due to the ambipolar potential.
The ions are then subjected to centrifugal force and their
rotation frequency is affected by this effective gravitational
force, while the electrons are driven by both the E 3 B
drift and the diamagnetic drift. The difference between the
azimuthal drift velocities of the ions and electrons induces
charge separation which cannot be fully neutralized by the
electrons whose axial motions are dragged by the collisions
with neutral particles. Thus fluctuations are excited and
azimuthal motions are organized in such a way that the
core part of the plasmas is rotating almost rigidly, while the
outer part lags behind the core part because the azimuthal
drift velocities do not increase in proportion to the radius,
consequently producing a spiral structure.

Equations for ions and electrons in magnetized plasmas
read
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where na , va , and na (a � e or i) are the density, veloc-
ity, and collision frequency with neutral particles of elec-
trons and ions, respectively, and f is the plasma potential.
Usually the ion temperature is much less than the electron
temperature in laboratory plasmas, we neglect the ion pres-
sure term in Eq. (2) for simplicity (da,e � 1 for a � e,
and 0 for a � i).

In the following, physical quantities are divided into the
stationary parts and fluctuating parts:0
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For the ion drift, an effective gravitational drift due to

the centrifugal force is taken into account in the azimuthal
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direction, and is neglected in the radial direction since
ni�Vi ø 1. For the electron drift, the diamagnetic drift is
dominated over the gravitational drift due to the centrifugal
force. The rotation frequencies of the ion and electron
azimuthal drift now read
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where vE and v� are the frequencies associated with the
E 3 B drift and the diamagnetic drift, respectively, de-
fined by
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where C2
s � Te�M, y

2
T � Te�m, Vi � eB�Mc, and

Ve � eB�mc (M: ion mass, m: electron mass). The
normalized potential ef0�Te has been replaced by f0 in
Eq. (4). The second term in the expression for v

i
0 is a

contribution from the centrifugal force.
The space potential produced by the ion radial trans-

port is short-circuited by the electron axial transport so
that we have =�ni

0v i
0� � =�ne

0ve
0 �, which determines the

profile of the equilibrium density and potential. Since
the solution of this equation is sensitively dependent on the
boundary conditions at the end of the field lines unless
the plasma is so long that parallel diffusion can be ne-
glected altogether, it is unlikely to obtain a self-consistent
solution n0�r , z� and f0�r, z� to the problem of ambipolar
diffusion across the magnetic field. Instead, in the follow-
ing we take a phenomenological approach to assume the
density and potential profiles compatible with those ob-
served in the experiment.

The fluctuating parts of ion velocities given by Eqs. (1)
and (2) are
4370
ui
� � 2

C2
s

Si�v�

∑
i��Vi 1 2v

i
0�

r
1 Gi�v�

≠

≠r

∏
f� ,

y
i
� �

C2
s

Si�v�

∑µ
Vi 1 vi

0 1
dy

i
0

dr

∂
≠

≠r
2

i�Gi�v�
r

∏
f� ,

wi
� � 2

C2
s

Gi�v�
≠f�

≠z
,

where ui
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components of v i
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0 is the zeroth order azimuthal drift velocity for
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0�. The fluctuating parts of electron ve-

locities ue
�, y

e
� , and we

� are also obtained in a similar
calculation.

Substituting the above velocities into the electron and
ion continuity equations, invoking charge neutrality ne

� �
ni

� � n�, and assuming the axial dependence of the poten-
tial with the normalizations j � r�rd and h � z�rd (rd :
plasma radius) as

f��j, h� � f��j�e2�k2ik�h , (5)

we have
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where the quantity b�j� is given by
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In deriving Eq. (6), we have neglected the terms of the
order of or less than O�Vi�Ve� and O�vi

0�Vi�, and used
the following approximation derived from the electron or
ion continuity equation:
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Equation (6) describes low frequency fluctuations excited
by collisional drift wave instability [the first term of b�j�]
[8] and flute mode instability such as the gravitational in-
stability due to centrifugal force acting on ions [the sec-
ond term of b�j�] [9] and Kelvin-Helmholz instability
[the third and fourth terms of b�j�] [10]. The difference
between Eq. (6) and the equation derived by Rosenbulth
and Simon [11] is that the collisional drag is taken into
account and the charge neutrality is assumed in Eq. (6),
while in Ref. [11] the collisional drag is not included
and the ion diamagnetic drift is taken into account in-
stead of the electron diamagnetic drift. By showing that
f��j� � c��j��

p
n0�j�, Eq. (6) is transformed to
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The ratio of the contribution from the drift
wave to that from the flute mode is estimated
to be �k2 1 k2� �Ve�ne� �rdVi�Cs�. The col-
lisional drift wave instability is dominant when
k2 1 k2 ¿ �ne�Ve� �Cs�rdVi� is satisfied. The quantity
�ne�Ve� �Cs�rdVi� is of the order of 1024 –1025 for the
ECR plasmas, and thus we only consider the fluctuations
due to the collisional drift wave instability:
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Now the characteristic features of the solutions for
Eq. (9) can be examined as follows. The solution is
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approximated in the case of weak j dependence of the
zeroth order quantities by c��j� � J��j

p
A�, where J�

is the Bessel function of the first kind. The real part of
the argument of the Bessel function should be positive
to give a convergent behavior while the imaginary part
is responsible for spiral structure, which comes from the
imaginary parts of v, Ge�v�, and Gi�v�. Multiplying
c

�
� to Eq. (9) and integrating the resultant equation from

the center to the edge of the plasma under the boundary
condition c��0� � c��1� � 0, we haveZ 1
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From the imaginary part of this equation, we haveZ
Im�A�j��jjc��j�j2dj � 0 , (11)

which corresponds to the Rayleigh condition. For a col-
lisional drift mode, we have at the marginal instability
�g � 0� with k ¿ k,

Im�A�j��

�
nek2VeVi�vr 2 �v

e
0 � �vr 2 �v

i
0� �vr 2 �vE�

jGe�v�j2jGi�v�j2��vr 2 �vE�2 1 g2�
,

from which the Rayleigh condition holds even when vr �
0, indicating the formation of stationary spiral structures.
The winding direction of spiral arms is reversed when the
magnetic fields are changed in sign since the imaginary
part of A�j� is proportional to the odd power of the mag-
netic field for vr � 0. Certainly, rotating spirals exist
as well.

Here we solve Eq. (6) numerically with the boundary
condition f��0� � f��1� � 0. Since, according to the
experimental observations, the profile of E 3 B drift
frequency vE has one zero between j � 0 and j � 1,
we have used the vE profile as shown in Fig. 1 in the
calculations. Furthermore, the density profile n0�r� has
been assumed to be Gaussian, from which the diamagnetic
drift frequency v� is depicted in the same figure. We
have both the stationary �vr � 0� and rotating �vr fi 0�
spiral solutions for a given profile of the zeroth order
quantities n0�r� and vE�r�. The numerical results for the
stationary solution �� � 2� are shown in Fig. 2, where
Fig. 2(a) is the radial potential profile and Fig. 2(b) is
the density perturbation contour calculated by Eq. (8).
The spiral structure is identified as an Archimedian spiral,
which is seen from the eikonal approximation for the
solution of Eq. (6); in the case of weak j dependence of
b�j�, f��j� exp�i�u� � exp�i

R
Re�

p
b� dj 1 i�u� �

exp�i Re�
p

b�j 1 i�u� and the spiral curves are given
by j ~ u. The density contour structure is similar to the
observed spiral.

The vector field plot of the ion velocity �ui
�, yi

�	 asso-
ciated with this spiral structure is depicted in Fig. 3. In
the figure, each arrow is colored by red for positive radial
velocity ui

� . 0 and by green for negative radial veloc-
FIG. 1. The radial profiles of the normalized E 3 B drift fre-
quency vE�Vi and the normalized diamagnetic drift frequency
v��Vi .

ity ui
� , 0. The flow pattern exhibits the similar spiral

structure, which is well explained by the E 3 B drift due
to the perturbed potential f�. It should be noted that the
spiral structure induces both the outward-going (counter-
clockwise) flow and the inward-going (clockwise) flow,
exhibiting a material circulation between the core and pe-
ripheral regions.

The imaginary part of the eigenvalue g decreases with
the azimuthal mode number �, which corresponds to the

FIG. 2 (color). The numerical results for a stationary spiral
solution (M�m � 80 000, k � 0.0675, k � 0.0225, g�V �
0.024). (a) The radial profile of the perturbed potential f��j�,
in which the solid line is the real part and the dotted line
is the imaginary part. (b) The density perturbation contour
Re��n��n0� exp�i�u��.
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FIG. 3 (color). The vector field plot of ion velocity associated
with the spiral structure corresponding to Fig. 2 (ui

� . 0: red,
ui

� , 0: green).

fact that the observed stationary spirals are always with
two arms.

The mass ratio of ion and electron is taken to be 80 000
in the above calculations since the experiments were car-
ried out in an argon plasma. The spiral solutions are
independent on the mass ratio and also obtained for the
hydrogen case �M�m � 2000�.

Even when we neglect the contributions from the cen-
trifugal and the Kelvin-Helmholz instabilities in Eq. (6),
there is no change in the pattern of the spiral. Thus, within
the context of the fluid formulation, collision plays a key
role in the formation of drift wave spirals.

In the numerical calculations, we have used the special
profile for the n0�r� and vE�r� since we need to compare
the numerically obtained spirals with those observed in the
experiment [4]. However, it has been confirmed that the
spiral solutions of Eq. (6) are insensitive to the profiles of
these quantities.

For the different parameters which give a small phase
difference between the real and imaginary parts of the
eigenfunction (Re�v� � 0, ��v� � 0.27, k � 0.115,
k � 0.0259), a granulated density structure is obtained,
which is regarded as a formation of vortex crystal. Al-
though the vortex crystallization has been reported in pure
electron plasmas [2], these types of structures may be
general entities excited in magnetized plasmas.

It should be noted that we used the e2�k2ik�h as an axial
mode function to include the axial variations observed in
the experiment. When we set k � 0, we also obtained spi-
ral solutions as shown in Fig. 2. Thus, the finiteness of k

does not affect the spiral pattern formation. Strictly, the ax-
ial profile is determined by the Ginzburg-Landau equation
in the third order with respect to the smallness parameter,
as a result of the balance between dispersion, diffusion,
4372
and nonlinearity, and is given by localized solutions [12].
Since the axial structure formation is decoupled with the
radial pattern formation in the present case, the nonlinear
results are omitted here, and will be reported elsewhere.

Formation of spiral structures is a rather general char-
acteristic of magnetized rotating plasmas since the energy
stored in the plasma inhomogeneity such as density and
velocity shear, is released to give instabilities which cause
the phase difference between the real and imaginary parts
of eigenfunctions driving a spiral structure. The insta-
bilities could be the collisional drift wave instability,
centrifugal instability, Kelvin-Helmholz instabil-
ity, and inhomogeneous energy-density driven in-
stability [6,13]. In the present case, in which
�k2 1 k2� ¿ �Ve�ne� �rdVi�Cs� is satisfied, the drift
wave instability is dominant, which is destabilized by
collisions. Thus, the collision plays a key role in the
formation of a drift wave spiral.

Under the special condition that vE�j� becomes zero
somewhere between j � 0 and j � 1, the characteristic
of the stationary spiral structure becomes similar to those
observed in the experiment. For a wide variety of density
and potential profiles, rotating spiral structures are nor-
mally excited.

We have obtained the linear eigenfunctions to show the
spiral structure formations in magnetized rotating plasmas.
We are planning to develop our theory to understand the
spiral structures observed in a gun-produced plasma [5].
It is worth noting that our study may contribute to under-
standing the mechanism of spiral galaxy formation.
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