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Heat Transport in Turbulent Rayleigh-Bénard Convection
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We present measurements of the Nusselt number N as a function of the Rayleigh number R in
cylindrical cells with aspect ratios 0.5 # G � D�d # 12.8 (D is the diameter and d is the height). We
used acetone with a Prandtl number s � 4.0 for 105 & R & 4 3 1010. A fit of a power law N �
N0Rgeff over limited ranges of R yielded values of geff from 0.275 near R � 107 to 0.300 near R �
1010. The data are inconsistent with a single power law for N �R�. For R . 107 they are consistent
with N � as21�12R1�4 1 bs21�7R3�7 as proposed by Grossmann and Lohse for s * 2.

PACS numbers: 47.27.– i, 44.25.+f, 47.27.Te
Since the pioneering measurements by Libchaber and
co-workers [1,2] of heat transport by turbulent gaseous
helium heated from below, there has been a revival of in-
terest in the nature of turbulent convection [3]. In addi-
tion to the local properties of the flow, one of the central
issues has been the global heat transport of the system,
as expressed by the Nusselt number N � leff�l. Here
leff � qd�DT is the effective thermal conductivity of the
convecting fluid (q is the heat-current density, d is the
height of the sample, and DT is the imposed temperature
difference), and l is the conductivity of the quiescent fluid.
Usually a simple power law

N � N0Rḡ (1)

was an adequate representation of the experimental data
within their resolution of a percent or so [4]. Here R �
agd3DT�kn is the Rayleigh number, a is the thermal ex-
pansion coefficient, g is the gravitational acceleration, k

is the thermal diffusivity, and n is the kinematic viscosity.
Various data sets yielded exponent values ḡ from 0.28 to
0.31 [5,6]. Most recently, measurements over the unprece-
dented range 106 & R & 1017 were made by Niemela
et al., and a fit to them of Eq. (1) gave ḡ � 0.309 [5], but
even over this extremely wide range these data did not have
the resolution to reveal deviations from the functional form
of Eq. (1). Competing theoretical models also made pre-
dictions of power-law behavior, with g in the same narrow
range [2,6–8]. For example, a boundary-layer scaling the-
ory [2,8] which yielded g � 2�7 � 0.2857 was an early
favorite, at least for the experimentally accessible range
R & 1012. It was generally consistent with most of the
available experimental results. However, very recently a
competing model based on the decomposition of the ki-
netic and the thermal dissipation into boundary-layer and
bulk contributions was presented by Grossmann and Lohse
(GL) [7] and predicted non-power-law behavior. Accord-
ing to GL, the data measure an average exponent ḡ as-
sociated with a crossover from g � 1�4 at small R to a
slightly larger g at much larger R. In the experimental
range the effective exponent geff � d�ln�N ���d�ln�R��,
which should be compared with the experimentally deter-
mined ḡ, is close to 2�7 and depends only weakly upon R.
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Within the typical experimental resolution of a percent or
so, it has not been possible before to distinguish between
these competing theories.

Here we present new measurements of N �R� over the
range 105 & R & 4 3 1010 for a Prandtl number s �
n�k � 4.0. Our data are of exceptionally high precision
and accuracy. They are incompatible with the single power
law equation (1), and yield values of geff which vary from
0.277 near R � 107 to 0.300 near R � 1010. In particular,
the results rule out the prediction [2,8] g � 2�7. For
R * 107 a much better fit to our results can be obtained
with the crossover function,

N � as21�12R1�4 1 bs21�7R3�7, (2)

proposed by GL [7] for s * 2.
We used two apparatus. One was described previously

[9]. It could accommodate cells with a height up to
d � 3 cm. The other was similar, except that its three con-
centric sections were lengthened by 20 cm to allow mea-
surements with cells as long as 23 cm. In both, the cell top
was a sapphire disk of diameter 10 cm. A high-density
polyethylene sidewall of circular cross section and with
diameter D close to 8.8 cm was sealed to the top and
bottom by ethylene-propylene O rings. Four walls, with
heights ranging from 0.70 to 17.4 cm, were used and
yielded aspect ratios G � D�d � 12.8, 2.0, 1.0, and 0.5.
The bottom plate had a mirror finish and contained two
thermistors. The fluid was acetone [10]. From Eq. (8) of
Ref. [11], we estimated x � 1 1 0.0012DT for the ratio
of the temperature drops across the top and bottom bound-
ary layers. Our temperature stability and resolution was
0.001 ±C or better. We measured and corrected for the con-
ductances of the empty cells, and applied corrections for
resistance in series with the fluid. The bath and bottom-
plate temperatures usually fluctuated by no more than a
few mK. Usually DT was stepped in equal increments on
a logarithmic scale, holding the mean temperature close to
32.00 ±C.

Results of our measurements in four cells of different G

are shown in Fig. 1. For each cell they cover about two
decades of R, and collectively they span the range of R
from 105 to 4 3 1010. There is a dependence of N �R�
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FIG. 1. The Nusselt number as a function of the Rayleigh
number. Solid squares: G � 12.8; open circles: G � 3.0; solid
circles: G � 1.0; open squares: G � 0.50; plusses: Ref. [13];
open triangles: Ref. [14]; solid line: Ref. [15].

upon G, as already noted by others [12]. For compari-
son, we also show in Fig. 1 the recent results of Chavanne
et al. [13] for s � 0.8 and G � 0.5 (plusses) and those
of Ashkenazi and Steinberg [14] for s � 1 and a cell of
square cross section and G � 0.72 (open triangles). There
is good agreement with the former, considering the differ-
ence in s. The latter are about a factor of 1.6 larger than
our results; this difference seems too large to be attributed
to the difference in s or the geometry and remains unex-
plained. The solid line just above the open circles in the
figure (more easily seen in Fig. 2) corresponds to the fit of
Eq. (1) to the data of Liu and Ecke [15] for s � 4, G � 1,
and a cell with a square cross section. The agreement
with our data is excellent, considering the difference in
geometry.

Figure 1 does not have enough resolution to reveal de-
tails about the data. Thus we use the early prediction
g � 2�7 as a reference, and show log10�N R22�7� as a
function of log10�R� in Fig. 2. If the theory were correct,

FIG. 2. High-resolution plot of the Nusselt number as a func-
tion of the Rayleigh number. The symbols are as in Fig. 1.
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N R22�7 should be equal to N0, i.e., independent of R.
If Eq. (1) is the right functional form but g differs from
2�7, then the data should fall on straight lines with slopes
equal to g 2 2�7. Our G � 12.8 data (solid squares) are
at relatively small R and one might not expect Eq. (1) to
become applicable until R is larger. The G � 3.0 data ac-
tually show slight curvature, but in any case would yield
ḡ , 2�7. The smaller-G data are clearly curved, show-
ing that Eq. (1) is not applicable with any value of g. In
order to make this conclusion more quantitative, we show
in Fig. 3 effective local exponents geff derived by fitting
Eq. (1) to the data over various restricted ranges, each cov-
ering about half a decade of R. The fits yield values of
geff�R� which have a minimum near R � 107. Within our
resolution geff is independent of G.

To the extent that geff does not depend upon G, it is
possible to write N �R, G� as

N �R, G� � f�G�F�R� , (3)

in terms of a scale factor f�G� � O �1� and a scaling
function F�R� which is independent of G. In Fig. 4 we
show log10�R22�7F�R�� as a function of log10�R�. Here
we chose arbitrarily the G � 1 data as a reference and as-
signed them the value f�G � 1� � 1. One sees that the
data for all G collapse onto a universal curve.

Next we compare the predictions of GL [7] with our
data. These authors defined various scaling regimes in
the R 2 s plane. For s * 2, they expect that crossover
between their regions Iu and IIIu should be observed. For
that case, Eq. (2) is predicted to apply. One way to test
this [16] is to plot y � �N �f�G����R1�4s21�12� as a
function of x � R5�28s25�84. If the prediction is correct,
the data should fall on a straight line y � a 1 bx with a
and b equal to the coefficients in Eq. (2). Our data
are shown in this parametrization in Fig. 5. The solid
line is a least-squares fit to the G � 1 data. The fit
is extremely good. The coefficients are a � 0.326 and
b � 2.36 3 1023, in good agreement with the coefficients

FIG. 3. The effective exponent as a function of R. Solid
squares: G � 12.8. Open circles: G � 3.0. Solid circles:
G � 1.0. Open squares: G � 0.5. Solid line: logarithmic
derivative of Eq. (2) with a � 0.326 and b � 2.36 3 1023.
Dotted line: g � 2�7.
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FIG. 4. High-resolution plot of the scaling function F�R� de-
fined by Eq. (3). The symbols are as in Fig. 1. We used the scale
factors f�G� � 0.933, 1.000, 1.131, and 1.186 for G � 0.5, 1.0,
3.0, and 12, respectively. The solid line corresponds to a fit of
the prediction of GL to the G � 1 data.

estimated by GL on the basis of other experiments [17].
At small R the G � 3 data deviate slightly from the GL
prediction. This may be because the values of R are too
small for the GL function to apply. GL estimate that
their region Iu has a lower boundary below which the
Reynolds number of a large-scale flow, which they predict
to be given by Re � 0.039R1�2s25�6, is less than about
50. This occurs when R � 1.6 3 107, corresponding to
R5�28s25�84 � 17.8. This value is indicated in Fig. 5 by
the small vertical bar.

At large R the G � 0.5 data also deviate slightly from
the GL fit to the G � 1 data. However, we feel that
these deviations are so small that one cannot assert that
they exceed possible systematic errors. In the range of R
where they occur, the temperature differences are already
quite large, and small effects due to deviations from the
Boussinesq approximation cannot at present be ruled out.

FIG. 5. Plot of F�R���R1�4s21�12� as a function of
R5�28s25�84. The symbols are as in Fig. 1. The straight
line is a least-squares fit to the G � 1 data. The small vertical
bar indicates an estimate of the lower limit of applicability of
the GL prediction.
It would be desirable to make measurements in a much
larger cell where these Rayleigh numbers could be reached
with more modest temperature differences.

Finally, we note that small deviations from the GL pre-
diction Eq. (2) might occur because s is not sufficiently
much larger than the crossover value s � 2 above which
Eq. (2) is applicable. It would be desirable to determine
F�R� using other fluids which have larger Prandtl numbers.
However, for these fluids larger cells will be required in or-
der to reach the same maximum R.

The logarithmic derivative geff of Eq. (2) based on the
parameters a and b determined from the fit to the G � 1
data is shown as a solid line in Fig. 3. For R * 107 the line
agrees quite well with the values determined by local fits
of Eq. (1) to the data. The small, seemingly systematic,
deviations which do exist at large and small R correspond
to the deviations from the straight line in Fig. 5 and were
discussed above for that parametrization.

Finally, we ask whether the agreement between the the-
ory and the data is sensitive to the details of the GL pre-
diction. For large s, the theory predicts crossover from
Iu to IIIu and Eq. (2) [7]. For somewhat smaller s � 1,
however, the crossover should be from Iu to IVu, and the
prediction then reads [7]

N � as21�12R1�4 1 bR1�3. (4)

As a function of s, GL estimate that the transition from
Eq. (2) to Eq. (4) occurs near s � 2, but there is some
uncertainty in this value. Thus, in Fig. 6 we compared
Eq. (4) with our results for G � 1 by plotting y �
N ��R1�4s21�12� as a function of x � R1�12s1�12. If
Eq. (4) is applicable, this should yield a straight line. As
can be seen, the data deviate systematically from the fit.
Thus a transition from Iu to IVu at s � 4 is inconsistent
with our data.

In Fig. 7 we show the deviations dN �N from fits of
Eqs. (1), (2), and (4) to the G � 1.0 data. For Eq. (1) they

FIG. 6. Plot of N ��R1�4s21�12� as a function of R1�12s1�12.
If Eq. (4) is correct, the points should fall on the straight line, a
least-squares fit. The data deviate systematically, showing that
Eq. (4) is not the right functional form.
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FIG. 7. Relative deviations dN �N from fits of (a) Eq. (1),
(b) Eq. (2), and (c) Eq. (4) to the G � 1.0 data.

are systematic, as already expected. For Eq. (2) the fit
is nearly perfect. For Eq. (4) the deviations are nearly as
large as those for Eq. (1). Thus Eq. (4) is not applicable
to the data, and of the three functional forms which we
examined only Eq. (2) provides a satisfactory fit.

All of the work reported here has concentrated on mea-
surements of N �R� for acetone with s � 4.0. We con-
clude that there is no significant range of R over which the
power law equation (1) is applicable, and that the crossover
function equation (2) proposed by Grossmann and Lohse
provides a good fit to the data for R * 107 where the
Reynolds number of the large-scale flow is expected [7]
to exceed about 50. Obviously a great deal of additional
high-precision work remains to be done. An apparatus
with a larger cell, with d � 50 cm, for instance, could be
constructed and would permit measurements with acetone
up to R � 1012. To provide further tests of the GL pre-
dictions, a systematic study of N �R, s� as a function of
s should be carried out. This can be done using various
fluids such as methanol, ethanol, and 2-propanol. Since
the Reynolds number is central to the GL theory, its de-
termination is also an obvious area for further work. And
finally, measurements of comparable accuracy and preci-
sion should be extended to the compressed gases where
s � 0.7, where more direct comparison with much pre-
vious work [3,6] is possible, and where a different GL
crossover function [7] should pertain.
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