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Spontaneous Emission from Photonic Crystals: Full Vectorial Calculations
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Quantum electrodynamics of atom spontaneous emission from a three-dimensional photonic crystal is
studied in a full vectorial framework. The electromagnetic fields are quantized via solving the eigenprob-
lem of photonic crystals with use of a plane-wave expansion method. It is found that the photon density
of states and local density of states (LDOS) with a full band gap vary slowly near the edge of band gap,
in significant contrast to the singular character predicted by the previous isotropic model. Therefore,
the spontaneous emission can be solved by conventional Weisskopf-Wigner approximate theory, which
yields a pure exponentially decaying behavior with a rate proportional to the LDOS.

PACS numbers: 42.70.Qs, 32.80.– t, 42.50.Dv
In recent years, there has been vast interest in fabrica-
tion of photonic crystals with a full band gap [1–3]. In the
band gap, there is no electromagnetic (EM) mode that can
propagate in the crystal, which results in some peculiar
physical properties, such as inhibition of atom sponta-
neous emission and localization of light [2,3]. Recently,
much progress has been made toward fabricating three-
dimensional (3D) photonic crystals with an absolute
band gap in visible and infrared regimes by means of
microlithography and inverse-opal technique [4–6].

Another important subject that has attracted much atten-
tion concerns the understanding of quantum electrodynam-
ics (QED) behaviors of atoms and molecules in photonic
crystals. In the theoretical side, an isotropic model devel-
oped by John and co-workers [7] was almost exclusively
adopted to treat the QED problems by this group and other
groups. In that model, the dispersion relation of photon in
one-dimensional periodic multilayers is extended directly
to the 3D case. This results in a singular behavior of photon
density of states (DOS) as proportional to �v 2 vc�21�2,
where vc is the edge frequency of the band gap. As the
photon DOS plays an important role in determining the
QED behavior of atoms when their emission frequency lies
near the gap edge, some peculiar properties were predicted
by this model, such as the anomalous Lamb shift [7], oscil-
latory behavior of spontaneous emission [8], and enhanced
quantum interference effects [9]. In addition, the vecto-
rial nature of EM fields is completely omitted. Although
an improved model employing more realistic photon dis-
persion as v � vc 1 A�k 2 k0�2 was discussed in these
works [7,8,10], the extension of the dispersion formula
near the gap edge to the whole momentum space and the
neglect of vectorial nature of EM fields remain.

On the other hand, the spontaneous emission and fluo-
rescence of molecules in photonic crystals have been in-
vestigated by several groups [11–13]. However, there still
is a lack of clear quantitative understanding of such QED
characters observed in these experiments, as other effects
such as complex chemical and electronic interactions may
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account for a major fraction of the change in the measured
QED characters.

All these QED subjects require more accurate solution
of light and atom interaction in the framework of quantum
theory, fully taking into account the vectorial character of
EM fields. In this Letter, we will investigate the QED of
spontaneous emission in a 3D photonic crystal based on a
full vectorial treatment of EM fields. It should be noted
that the vectorial nature of EM waves is well established
in studying photonic band structures [14,15], photon DOS
[16], and dipole radiation [17] in 3D photonic crystals;
however, the discussion of QED subject remains lying in
the scalar framework [7–10].

The full quantum theory of light and atom interaction
first requires the quantization of EM fields. In a 3D pho-
tonic crystal, we apply a plane-wave expansion method
[14–16] to solve the eigenmodes. We denote jn, k� as
the Bloch state at the wave vector of k and the nth pho-
tonic band, which has a frequency vnk and a magnetic
field function of Hnk�r�. The eigenmodes satisfy the
following orthogonalization and normalization relations:R

V H�
n0k0�r� ? Hnk�r� d3r � Vdn,n0d�k 2 k0�, where V is

the volume of photonic crystal. The eigenmode Hnk ob-
tained in this way is a nondimensional function.

Following the common way of photon quantization,
we can expand the EM fields in the photonic crystal as
follows:

H�r, t� �
X
nk

hnk�Hnk�r�anke2ivnkt

1 H�
nk�r�ay

nkeivnkt� , (1)

where ank and a
y
nk are annihilation and creation operators

of photon with a Bloch state jnk�. The coefficients can be
derived as hnk �

p
h̄vnk�2m0V , so that the Hamiltonian

of photon in a photonic crystal has the well-known stan-
dard form Hf �

P
nk h̄vnk�ay

nkank 1
1
2 �.

The quantized electric field can be obtained by using
Maxwell’s equations:
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E�r, t� �
X
nk

�Enk�r�anke2ivnkt

1 E�
nk�r�a1

nkeivnkt� , (2)

with Enk�r� �
ic

e�r�

p
h̄�2e0vnkV = 3 Hnk�r�.

With the quantized EM fields, we can now solve the
atomic QED via a standard full quantum theory. Consider
a two-level atom with excited state j2�, ground state j1�,
and resonant transition frequency v0. The Schrödinger
equation of the system in the interaction picture reads

ih̄
≠

≠t
jc�t�� � HI jc�t�� , (3)

where the interaction Hamiltonian is given as HI �P
nk h̄�gnks1ankeiDnkt 1 g�

nks2a1
nke2iDnkt�. Here

Dnk � v0 vnk, while s1 � j2� �1j and s2 � j1� �2j
are atomic transition operators. The coupling coefficient
of atom-field interaction in the dipole approximation reads
gnk � 2u ? Enk�r��h̄, with u being the dipole moment
vector of atomic transition between states j2� and j1�.

Assume the atom is initially on the excited state j2� and
the field is in the vacuum state. The wave function of the
system then can be written as

jc�t�� � c2�t� j2, �0	� 1
X
nk

c1,nk�t� j1, nk� . (4)

Substituting the wave function into Schrödinger equation
(3), we can derive the following formal differential-integral
equation satisfied with c2�t�:

d
dt

c2 � 2
X
nk

j gnk j 2
Z t

0
eiDnk�t2t0�c2�t0� dt0. (5)

To solve this complex equation for spontaneous emission,
some approximations should be made. For atoms in
vacuum, the Weisskopf-Wigner theory is an excellent
approximation, which results in a pure exponential-decay
behavior of excited state. As is noted above, there remain
two great simplifications in the isotropic model used for
QED in photonic crystals. First the dispersion relation
v � vc 1 A�k 2 k0�2 is used for 3D crystals, and then it
is extended to the whole momentum space, with the as-
sumption that main contributions should come from the
photon modes near the atomic resonant frequency. An-
other approximation neglects the dependence of atom-field
coupling coefficient gnk, on the Bloch states. With these
approximations, Eq. (5) can be analytically solved through
a Laplace-transform method. However, the results are
based on scalar wave approximation, and are quite
doubtful.

To solve Eq. (5), we define the photon DOS r�v� and
the local density of states (LDOS) r�v, r� for the photonic
crystal as

r�v� �
X
nk

d�v 2 vnk�

�
V

�2p�3

X
n

Z
BZ

d3kd�v 2 vnk� , (6)
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r�v, r� �
X
nk

jgnk�r�j2d�v 2 vnk�

�
u2

0c2

2h̄e0�2p�3e2�r�

3
X
n

Z
BZ

d3k
jû ? �= 3 Hnk�r��j2

vnk

3 d�v 2 vnk� . (7)

In Eqs. (6) and (7), BZ means the first Brillouin zone
of photonic crystals, u0 and û denote the magnitude and
direction of dipole moment u, respectively. When the
atomic dipole is randomly oriented in space, Eq. (7) can
be further simplified.

The DOS and LDOS for a vacuum can be easily de-
rived and take a simple form: r�v� � 4Vv2��2p2�c3 and
r�v, r� � �1�4pe0� �4v3u2

0���6p h̄c3�. The LDOS does
not depend on the position of atom in space. However,
in a 3D photonic crystal, the analytical expression for the
DOS and LDOS is not available. Instead, numerical cal-
culation is necessary, which is complex and tedious. The
full vectorial treatment involves several numerical steps:
Discretize the Brillouin zone into many sampling cells,
then solve the photonic bands and EM fields at each cell
by the plane-wave expansion method, and finally calculate
the DOS and LDOS by summing the contribution from all
Bloch states via Eqs. (6) and (7). To improve the calcu-
lation accuracy, a modified tetrahedral integration method
developed in electronic systems [18] is utilized.

With the definition of the DOS and LDOS, Eq. (5) now
takes the form

d
dt

c2 � 2
Z `

0
r�v, r� dv

Z t

0
ei�v02v� �t2t0�c2�t0� dt0.

(8)

For the vacuum mode, the solution of Eq. (8) can be readily
obtained by the Weisskopf-Wigner theory, and we have

d
dt

c2 � 2
G

2
c2, G � 2pr�v0, r� �

1
4pe0

4v
3
0u2

0

3h̄c3 .

(9)

Therefore, the atomic excited state decays in a purely ex-
ponential behavior, with t � 1�G being its lifetime. The
Weisskopf-Wigner theory is applicable if the DOS (more
accurately the LDOS) of photon modes varies slowly near
atomic resonant frequency v0. For a 3D photonic crys-
tal, in the isotropic model, the DOS exhibits a singularity
at the gap edge as proportional to �v vc�21�2. Then the
Weisskopf-Wigner is not applicable any more. However,
according to numerical simulation for 3D photonic crys-
tals, the isotropic model and modified anisotropic model
is too much simplified, and gives rise to doubtful QED
properties.

To show this, we first consider a photonic crystal with
diamond lattice of dielectric spheres in air. This structure
is the first one predicted to possess a full band gap in the
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whole Brillouin zone [14]. We have calculated the DOS
and LDOS for such structures. The DOS for a diamond
lattice of dielectric spheres in air with a relative permittiv-
ity of e � 12.96 and a filling fraction of f � 0.34 is dis-
played in Fig. 1(a). The result is obtained by an expansion
of 721 plane waves and by discretizing the first Brillouin
zone by over 13 000 cells. The curve is plotted with a step
of 0.002�2pc�a�, where a is the lattice constant, c is the
light speed in vacuum. The convergence accuracy is better
than 0.5%. There appears a large full band gap at the fre-
quency range of 0.440 0.511�2pc�a� with a normalized
gap size of 14.9%. It is shown that the bottom and top gap
edges lie at high symmetry points in the Brillouin zone as
W and L points, and their equivalent points, respectively.

The DOS varies slowly near both the bottom and top
gap edges. The variation can be approximately fitted by a
parabolic curve � r�v� ~ �v 2 vc�2� near the band edge
[in a frequency range of about 0.04�2pc�a�]. This is in
vast contrast to that predicted by the isotropic model [see
the inset of Fig. 1(a)]: No singular behavior occurs. In
fact, as the gap edge lies at only a limited point in the Bril-
louin zone (8 equivalent L points and 24 W points), this
nonsingular character of DOS is natural from the physi-
cal viewpoint. In addition, the DOS varies much in a wide
frequency range. In the long-wavelength regime, it is para-
bolic, while at higher frequency, there appear some mod-
est peaks. Obviously the approximation of extending the
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FIG. 1. Plots of (a) DOS and LDOS at sites of (b) �0, 0, 0�,
(c) �0.25a, 0.25a, 0.25a�, and (d) �0.5a, 0, 0�, for a diamond lat-
tice of dielectric spheres in air with e � 12.96 and f � 0.34.
Inset in (a): Schematic plots of DOS and LDOS predicted by
the isotropic model.
dispersion relation near the gap edge to a large frequency
regime is thoroughly bad.

According to Eq. (8), the relevant physical function di-
rectly correlated with atomic QED is the LDOS, rather
than the DOS. Corresponding to Fig. 1(a), we have cal-
culated the LDOS for the atom lying at different sites in-
side the unit cell of crystal. The convergence is slower
than the DOS calculations, yet still satisfactory. The re-
sults for LDOS at r � �0, 0, 0�, �0.25a, 0.25a, 0.25a�, and
�0.5a, 0, 0� are plotted in Figs. 1(b), 1(c), and 1(d), respec-
tively. In the calculations, we have assumed that the atomic
dipole moment is randomly oriented in space. Clearly all
the LDOS curves do not follow the variation of the DOS
curve; furthermore, they differ remarkably with each other
(note the y-axis unit of the three panels is the same). All
these characters demonstrate that the field-atom coupling
coefficient strongly depends on the Bloch wave vector, its
magnitude, and orientation. This difference is not expected
from the isotropic model, where the vectorial character of
the EM wave is completely omitted.

The LDOS variation is also in vast contradiction to in-
verse square root behavior in the isotropic model [see the
inset of Fig. 1(a)]. One can see from Figs. 1(b), 1(c), and
1(d) that the LDOS vanishes in the band gap, a natural
result as no states exist, while at frequency near the gap
edge, the LDOS increases from zero, basically in a para-
bolic way. Furthermore, the growth speed differs much at
different sites. It is fastest at the site of r � �0, 0, 0�, while
slowest at r � �0.25a, 0.25a, 0.25a�. Irrespective of large
difference in the LDOS variation for different sites, a direct
extension of LDOS behavior near the gap edge to the whole
frequency space is a very poor approximation at each site.

The above analyses based on realistic numerical calcu-
lation therefore demonstrate that the approximations made
in previous works based on a greatly simplified isotropic
model are incorrect even in quality; thus, the predicted
QED properties for a 3D photonic crystal are quite prob-
lematic. For atom spontaneous emission discussed in this
paper concerning the solution of Eq. (8), the Weisskopf-
Wigner approximate theory is still applicable, as the DOS
and more accurately the LDOS vary slowly near the gap
edge, and far from rapidly in the large frequency range.
Then, the solution of Eq. (8) also yields Eq. (9), except
that the LDOS for vacuum is now displaced by that in pho-
tonic crystals. Therefore, similar to in vacuum, the spon-
taneous emission of atom in a 3D photonic crystal also
exhibits a simple exponentially decaying feature, with a
rate of G � 2pr�v0, r�. In the band gap G � 0, the ex-
cited state will persist to any long time, unless other per-
turbation occurs. This character of spontaneous emission
is significantly different from the oscillatory behavior pre-
dicted by the isotropic model [8], where the atom-field
interaction is much overestimated near the gap edge and
therefore qualitative discrepancy is produced.

We now turn to a practical 3D photonic crystal that
can be overcome in optical regime: inverse-opal photonic
4343
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FIG. 2. Plots of (a) DOS and LDOS at sites of (b) �0, 0, 0�,
(c) �0.5a, 0, 0�, and (d) �0.36a, 0.36a, 0.36a�, for an inverse-opal
photonic crystal with e � 12.96 and f � 0.78.

crystals [6]. This structure is composed of a face-centered
cubic lattice of over-close-packed air sphere in a dielectric
background with a high refractive index and opens a full
band gap in high frequency photonic bands. We have cal-
culated the DOS and LDOS for such a crystal to investigate
the atom spontaneous emission. The results for e � 12.96
and f � 0.78 are displayed in Fig. 2, for (a) the DOS, and
LDOS at sites of (b) r � �0, 0, 0�, (c) r � �0.5a, 0, 0�, and
(d) r � �0.36a, 0.36a, 0.36a�, respectively. In the calcu-
lations, 729 plane waves and 13 000 discretization cells
are used, and the dipole moment is assumed to randomly
orient. Similar to Fig. 1, the DOS and LDOS curves dif-
fer much from each other, and no singular behavior is
present. This is in good agreement with previous calcu-
lations [16,17]. Near the gap edge, the curves vary slowly,
which means that the spontaneous emission in such a pho-
tonic crystal also exhibits a simple exponentially decay-
ing character with a rate of G � 2pr�v0, r�. Further
calculations show that the LDOS at other sites all appears
to have similar characteristics. It should be noted that
current theoretical analyses are in accord with previous
observations on molecular spontaneous emission in a 3D
photonic crystal, where the dynamics can well be fitted by
one or several exponentially decaying curves [11–13].
4344
In summary, we have studied atom spontaneous
emission from a 3D photonic crystal in a full vectorial
framework by quantizing the Bloch states with use of a
plane-wave expansion method. Numerical calculations
show that the photon DOS and LDOS for 3D photonic
crystals with a full band gap vary slowly near the band
gap edge. This is in significant contrast to the singular
character predicted by the previous isotropic model. Then,
the spontaneous emission can be solved by conventional
Weisskopf-Wigner approximate theory. This yields a pure
exponentially decaying behavior of spontaneous emission
with a rate proportional to the LDOS in the crystals, also
appreciably different from the oscillatory feature predicted
before. Such a full vectorial treatment should open a
way to solving quantitatively QED problems for atoms in
photonic crystals.
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