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Reflection and Transmission of Waves near the Localization Threshold
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A theory is presented for propagation of waves in bounded media near the mobility edge, based on
the self-consistent theory for localization. It predicts a spatially inhomogeneous diffusion constant that
leads to scale dependence in enhanced backscattering and transmission.

PACS numbers: 42.25.Hz, 78.90.+ t
Enhanced backscattering (EB) and localization of waves
are two related subjects that have received a lot of atten-
tion in recent years [1–5]. They both find their origin in
interference effects in multiple scattering of waves. EB
with classical waves has elucidated the crucial role of reci-
procity [6–8]. For electrons, interest has concentrated on
weak localization effects, whose interpretation calls upon
the same interference events that are observed directly in
EB [9,10]. Recent experiments [4,11] call for a theory
capable of describing reflection and transmission around
the mobility edge. For open systems, the random-matrix
theory [12] and the self-consistent (SC) theory of local-
ization [13–15] have been developed. The first is non-
perturbational and can even deal with fluctuations, but is
restricted to quasi-1D systems as studied in microwave
experiments [3].

The SC theory provides an implicit equation for the
dynamic “ac” diffusion constant D�V� of the waves [15],
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The Boltzmann diffusion constant DB is free from inter-
ference. The second term contains the average “return
probability” C�r, r� by constructive interference of recip-
rocal paths at position r, which lowers the diffusion con-
stant. We will ignore the difference between extinction
length, scattering and Boltzmann transport mean-free path
and represent all by �. With yE being the transport speed
of light and k its wave number, we have (in 3D) the famil-
iar relations DB �

1
3yE� [1], and r�k� � k2�p2yE for the

density of states per unit volume. k, �, and yE have been
calculated near the localization threshold [16].

Without magnetic fields, the reciprocity principle re-
quires the amount of constructive interference CV�r, r� to
be exactly equal to the amount of “incoherent” radiation
returning at r [15,17]. CV must thus obey the dynamic
diffusion equation,

�2iV 2 = ? D�V, r�=�CV�r, r0� �
4p
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The factor 4p�� appears when single scattering is adopted
as a source for multiple scattering. In the rest of this
paper we consider V � 0, which describes stationary
diffusion flow.

Equations (1a) and (1b), here formulated for three di-
mensions, must contain the same diffusion constant, and
one seeks a “self-consistent” solution. In infinite me-
dia, C�r, r0� is translationally invariant, so that the return
probability C�r, r� and diffusion constant D�r� do not de-
pend on r. In reciprocal space C�q� � 4p��Dq2, so that
C�r, r� �

P
q C�q� � m�D�2, assuming an upper cutoff

qmax � m��. Hence,
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The mobility edge, defined by D � 0, obeys an Ioffe-
Regel–type criterion as derived microscopically by John
et al. [18] and Economou et al. [19], and agrees with the
numerical studies of the Anderson tight binding model
[20,21]. The cutoff removes short wave paths from the
return probability and influences the exact location of the
mobility edge [19,22]. For m � 1 the mobility edge is
located at k� � 1.

In finite media, translational symmetry is absent and
Eq. (1a) requires that the diffusion constant D�V, r� be
dependent on r. This has not to our knowledge been con-
sidered before, but is unavoidable if one doesn’t wish to
give up the basic ingredients of the SC theory of local-
ization: reciprocity and flux conservation. Previous work
focused on a homogeneous but “scale-dependent” diffusiv-
ity kernel D�V, r 2 r0�, with Fourier transform D�V, q�.
Near the mobility edge, D�V, q� � q has been suggested
[23–25]. The absence of such q dependence in the SC the-
ory is sometimes considered a serious failure, in spite of its
agreement with scaling arguments for the dynamic diffu-
sivity D�V� [26] and its qualitative agreement with scaling
theory [27], as shown by Wölfle and Vollhardt [15]. At the
mobility edge, our local formulation of the SC theory pre-
dicts the scale dependence D�z� � 1�z, which leads to a
transmission T � 1�L2 of a slab with thickness L, and
a rounding of the EB line shape. Both properties were
© 2000 The American Physical Society 4333
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previously interpreted as consequences of a scale-
dependent diffusivity D�q� � q [25]. Contrary to all
other approaches, our local variant of the SC theory deals
elegantly and explicitly with boundary conditions.

We consider stationary propagation, in a slab geometry
of thickness L, and Fourier transform �qk� the transverse
coordinate. For 0 , z , L, Eqs. (1a) and (1b) become

D�z�21 � D21
B 1
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C�0, z0, qk� 2 ze�0�≠zC�0, z0, qk� � 0 , (3c)

C�L, z0, qk� 1 ze�L�≠zC�L, z0, qk� � 0 . (3d)

The last two equations are the radiative boundary condi-
tions at both sides of the slab, featuring the “extrapola-
tion lengths” ze�0�L� � 3z0D�0�L��yE [28]. Berkovits
and Kaveh [25] emphasized that flux conservation requires
them to contain the diffusion constant D, including inter-
ference. In our theory, D is finite at the boundaries so that
ze is always nonzero, even in the localized regime, when
D vanishes in the bulk; z0 �

2
3 corresponds to no internal

reflection, and increases with increasing internal reflection.
The value for z0 in recent localization experiments [4,11]
is estimated to be typically 10.

Equation (3b) is recognized as an ordinary, second-order
differential equation with a source term. Without the latter,
two independent solutions f6�z� exist with constant and
nonzero Wronskian W�qk� � D�z� 3 � f 0

1f2 2 f 0
2f1�.

In a “quasi-1D” medium with transverse surface A , �2,
only the transverse mode qk � 0 contributes to Eq. (3a),
with weight 1�A. Equations (3a)–(3d) have analytical so-
lutions with a similar scale dependence of the transmis-
sion as predicted by random matrix theory [29]. For a
semi-infinite quasi-1D medium their solution is D�z� �
D�0� exp�22z�j�, with j � Ar�k�yE� the same localiza-
tion length as found in random matrix theory [29]. Further-
more, 1�D�0� � 1�DB 1 2z0�j.

For the slab geometry, Eqs. (3a)–(3d) have been studied
numerically. We first discuss the semi-infinite medium
L � `. In that case C�z, z0, qk� must be bounded at large
z, z0 so that, with f1�z� the growing solution, Eq. (3b) is
solved for

C�z, z0, qk� �
f1�z,�f2�z.�
W�qk���4p

2 P�qk�f2�z�f2�z0� ,

(4)

where z, � min�z, z0�, z. � max�z, z0�, and P�qk� is de-
termined by the boundary condition (3c) at z � 0. For the
critical value k� � 1 we have compared the numerical so-
lution to the simple algebraic form,
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FIG. 1. Solution of the self-consistent equation at the mobility
edge of a semi-infinite slab with internal reflection parameter
z0 � 10. Left panel: the diffusion constant D�z� as a function
of depth (in units of extinction lengths). Right panel: line profile
in enhanced backscattering. The dashed line is the conventional
cusp for k� ¿ 1 using the same extrapolation length ze.

D�z� �
D�0�

1 1 z�jc
, (5)

with two free parameters D�0� and jc. The homogeneous
solutions would then be

f1�z� � �z 1 jc�I1�qk�z 1 jc�� ;

f2�z� � �z 1 jc�K1�qk�z 1 jc�� ,
(6)

in terms of the modified Bessel functions I1 and K1 with
Wronskian W � D�0�jc [30]. Equation (4) shows that
C�z, z, qk� rises linearly in z for large z and that Eq. (3a) is
asymptotically satisfied. The SC equation for z � 0 gives
a relation between D�0� and jc. The remaining freedom in
jc was chosen to optimize self-consistency below 0.05%.
(see Fig. 1 and Table I). Both jc and D�0� depend heavily
on the parameter z0 in the boundary condition.

The line shape Ic�u� in EB can be obtained from
C�z, z0, qk� using standard methods [31] and is shown in
Fig. 1. Insight is provided by the approximate formula

TABLE I. Solution D�z� � D�0���1 1 z�jc� of the self-
consistent equations (3a)– (3d) at the mobility edge k� � 1
for a semi-infinite slab as a function of the parameter z0 that
controls internal reflection at the boundary. The middle column
shows the relation D�0� � 1�z0.

z0 D�0��DB jc��

2�3 0.642 1.5
3 0.336 3
5 0.249 4
7 0.203 6
10 0.159 8
20 0.0968 25
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FIG. 2. Approximate solution of the self-consistent equations
in the localized regime �k� � 0.96� of a semi-infinite slab with
internal reflection parameter z0 � 10, assuming an exponen-
tially decaying diffusion constant. The dashed line in the left
panel shows one iteration of the self-consistent equation. The
dashed line in the right panel is the conventional cusp for
k� ¿ 1 using the same extrapolation length ze.

Ic�u� � C�z � �, z0 � �, qk � 2k sinu�2�, used by
Lagendijk et al. [28]. The line shape exhibits a loga-
rithmic rounding Ic�u� � 1 1 ze�0�jcq2

k log�qkjc� when
qkj ø 1, rather than the familiar cusp Ic�u� � 1 2

zejqkj [31]. Berkovits and Kaveh [25] predicted a round-
ing of the line shape on the basis of the nonlocal diffusion
kernel D�q�.

The localized regime corresponds to k� , 1. As
in quasi-1D media, we may assert the solution
D�z� � D�0� exp�22z�j�, with j the localization
length. We find f6�z� � exp�2l6z� with l6 � 1�j 6q

q2
k 1 1�j2, and Wronskian W � 2D�0�

q
q2
k 1 1�j2.

The SC equation (3a) is satisfied for z ¿ j if
j�� � 2�k��2��1 2 �k��4�, whereas the SC equation
at z � 0 provides D�0�. Figure 2 shows the above expo-
nential ansatz for D to be satisfactory for z0 � 10, but for
smaller internal reflection we found less agreement. The
EB line shape is approximately given by

Ic�u� �
1

1 2 ze�0��j 1 ze�0�
q

q2
k 1 1�j2

, (7)

i.e., an analytical rounding for u , 1�kj (Fig. 2). This
EB line shape is reminiscent of an absorbing semi-infinite
medium in the delocalized regime, a case that must be
excluded experimentally [11].

Our final subject is the length dependence of the total
transmission T �L� of a slab with length L. For a point
source close to the boundary z � 0, the diffusion equation
predicts
FIG. 3. Numerical solution of the self-consistent equations for
a finite slab. The total transmission coefficient is displayed as a
function of the slab length L, for the critical value k� � 1 and in
the delocalized regime k� � 1.1. The dashed lines have slopes
22 and 21. We have adopted an internal reflection parameter
z0 � 10.

T �L� � z0�
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Z L

0
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DB

D�z�

∂21
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The integral is proportional to the optical thickness of the
slab. If D�z� is constant, Eq. (8) reduces to the familiar re-
sult of radiative transfer with internal reflection [32], with
the 1�L scaling. For a very long slab we expect the solution
D`�z� for a semi-infinite medium to be relevant. More pre-
cisely, D�z� � D`� 1

2L 2 j
1
2L 2 zj�. Equation (8) gives

T �L� !
Ω 4z0�D`�0��DB� �jc��� 3 ���L�2, k� � 1,

z0�D`�0��DB� ���j� 3 exp�2L�j�, k� , 1 .

(9)

This scale dependence agrees with scaling theory [15,33],
but has large and precise prefactors. (2.6 for k� � 1 and
z0 � 2

3 , and increasing with z0). In Figure 3 we compare
these results to the numerical solutions of Eqs. (3a)–(3d).
The 1�L2 law predicted at the mobility edge is seen to
disappear rapidly in the delocalized regime k� . 1. It
has been reported by Garcia and Genack [2] and Wiersma
et al. [4].

In summary, we have developed a theory for wave
propagation in finite media near the mobility edge, adopt-
ing a local diffusion picture. Globally, scale-dependent
diffusion is seen to emerge that captures quantitatively
known scaling properties in transmission and enhanced
backscattering.
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