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Parity Dependence of Nuclear Level Densities

Y. Alhassid,1 G. F. Bertsch,2 S. Liu,1 and H. Nakada3

1Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520
2Institute for Nuclear Theory and Department of Physics, University of Washington, Seattle, Washington 98195

3Department of Physics, Chiba University, Inage, Chiba 263-8522, Japan
(Received 9 November 1999)

A simple formula for the ratio of the number of odd- and even-parity states as a function of temperature
is derived. This formula is used to calculate the ratio of level densities of opposite parities as a function
of excitation energy. We test the formula with quantum Monte Carlo shell model calculations in the
�pf 1 g9�2� shell. The formula describes well the transition from low excitation energies where a single
parity dominates to high excitations where the two densities are equal.

PACS numbers: 21.10.Ma, 21.60.Cs, 21.60.Ka
Parity is a fundamental property of nuclear levels,
and its statistical distribution is important for describing
parity-violating processes and neutron-capture reactions.
Most theoretical models for level densities are based on
the Fermi gas model [1]. Shell corrections and correla-
tions due to residual interactions are included empirically.
An empirical modification of the Fermi gas formula—the
backshifted Bethe formula (BBF)—was successful in fit-
ting many experimental level densities by adjusting both
the single-particle level density parameter and the back-
shift parameter [2]. Only limited data are available for
the parity dependence of level densities since the neutron
p-wave resonances are much weaker than the s-wave
resonances at low energies and more difficult to measure.
Ericson [3] argued that the excitation of a relatively small
number of single-particle levels with opposite parity can
lead to an equal number of even- and odd-parity many-
particle densities. The assumption of equal densities
of opposite parities in the neutron resonance region is
commonly accepted [4] and used in the calculations of
neutron-capture rates for s and r processes in nucleosyn-
thesis [5,6]. Yet various theoretical studies [7] as well
as analysis of experimental data [8] indicate that level
densities can have a significant parity dependence.

Parity properties can in principle be calculated within
the interacting shell model, the basic theory of nuclear
structure. However the calculation of level densities in
the shell model requires large model spaces that are often
beyond the reach of conventional diagonalization methods.
Such methods are presently limited to A & 50 [9,10] (in
the pf shell). Recently, quantum Monte Carlo methods
[11,12] were used to calculate total and parity-projected
level densities [13] in the framework of the interacting shell
model. The methods were applied to nuclei in the iron-to-
germanium region using the complete �pf 1 g9�2�-shell
model space. The total level densities were found to be in
good agreement with the experimental level densities, and
significant parity dependence was found for A & 65.

The Monte Carlo calculations accurately take into ac-
count shell effects and correlations due to the residual
two-body interactions, but they are computationally inten-
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sive. In this paper we derive a simple formula for cal-
culating the ratio of the number of odd- and even-parity
states as a function of temperature. The formula is applied
to nuclei in the iron region and compared with the Monte
Carlo calculations. It reproduces well the crossover from
low temperatures, where one parity dominates, to higher
temperatures, where both densities become equal. Using
the BBF for the total level density, the results of the model
are converted to a ratio of parity-projected level densities
at fixed excitation energies.

The Monte Carlo approach is based on the Hubbard-
Stratonovich representation of the many-body imaginary-
time propagator, e2bH �

R
D�s�G�s�Us , where G�s�

is a Gaussian weight and Us is a one-body propagator
that describes noninteracting nucleons moving in fluctu-
ating time-dependent fields s�t�. The canonical thermal
expectation value of an observable O at inverse tempera-
ture b can be written as �O�A �

R
D�s�G�s�TrA�OUs��R

D�s�G�s�TrAUs , where TrA denotes a trace in the sub-
space of A particles [14]. The integrand is easily calculated
by matrix algebra in the single-particle space, and the mul-
tidimensional integral over the s fields is evaluated by the
Monte Carlo methods.

Parity-projected level densities were calculated in
the Monte Carlo method using the projectors P6 �
�1 6 P��2, where P is the parity operator [13]. For
even-even nuclei, the odd-parity level density is found to
have large statistical Monte Carlo errors at lower ener-
gies (even for good-sign interactions) because of a sign
problem introduced by the projection on odd-parity states.
However, the sign problem affects less the odd-even ratio
of partition functions with the estimator
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Here z �s� � TrAUs and zP�s� � TrA�PUs�. In (1) we
have used the notation �Xs�W �

R
D�s�W �s�Xs�R

D�s�W �s�, where W�s� � G�s�TrAUs . For a good-
sign interaction and an even-even nucleus, W is positive
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definite. In the Monte Carlo method we sample the
fields s according to W�s� and then estimate �Xs�W 	P

k Xsk �M, where sk are M samples of the fields. The
statistical Monte Carlo errors of Z6�Z are strongly corre-
lated (since Z2�Z 1 Z1�Z � 1) and the error estimate
of the ratio in (1) is D�Z2�Z1� 	 �Z1�Z�22D�Z1�Z�.

We have calculated the ratio Z2�Z1 for nuclei in the
iron region using the complete �pf 1 g9�2� shell and the
good-sign interaction of Ref. [13]. This interaction prop-
erly includes the dominant collective components of real-
istic effective nuclear interactions [15]. In Fig. 1 we show
the ratio of odd- to even-parity states as a function of in-
verse temperature b for three nuclei in the iron region:
56Fe, 60Ni, and 68Zn. In all three cases we observe a tran-
sition from mostly even-parity states at low temperatures
to an equal number of opposite parity states at high tem-
peratures. However the crossover depends on the nucleus.
For example, the crossover occurs at lower temperatures
for 68Zn than for 56Fe.

This observed parity dependence can be explained quan-
titatively by a simple model. We divide the single-particle
levels into two groups of even and odd parities, and de-
note the group having the smaller average occupation by
p. If the particles occupy the single-particle states inde-
pendently and randomly, we expect the distribution of oc-
cupancies n of the p parity group to be Poisson:

P�n� �
fn

n!
e2f . (2)

Here f is the (temperature-dependent) average occupancy
of orbitals with parity p . We have assumed that f is small
compared to both the total capacity of orbitals with parity
p and the total number of particles.
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FIG. 1. Ratio of odd-parity to even-parity partition functions
Z2�b��Z1�b� versus inverse temperature b for 56Fe (circles),
60Ni (squares), and 68Zn (diamonds), calculated in the Monte
Carlo method according to Eq. (1).
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For a nucleus with even A, an odd-parity many-particle
state is obtained when n is odd. The probability to have
an odd-parity state is thus P2 �

Podd
n P�n� � e2f sinhf,

while the probability for an even-parity state is P1 �Peven
n P�n� � e2f coshf. The ratio is then

P2

P1

�
Z2�b�
Z1�b�

� tanhf , (3)

where we have identified P6 � Z6�Z in terms of the par-
tition functions Z6�b� of the even/odd parity states and
the total partition function Z�b�.

The argument leading to Eq. (3) is easily ex-
tended to the case where protons and neutrons are
treated separately. We denote by Pp�np� and Pn�nn�
the respective Poisson distributions for protons and
neutrons with average occupancies fp and fn of
single-particle states with parity p. A many-particle
odd-parity state results if protons and neutrons have
overall parities �1, 2� or �2, 1�, respectively, i.e.,
P2 � Pp1Pn2 1 Pp2Pn1 � e2� fp1fn��coshfp sinhfn 1

sinhfp coshfn� (for an even-even nucleus). Similarly
P1 � e2� fp1fn��coshfp coshfn 1 sinhfp sinhfn�, and
the parity ratio is given by Eq. (3) but with
f � fp 1 fn. Furthermore, the convoluted distri-
bution P�n� �

P
np1nn�n Pp�np�Pn�nn� of finding n

nucleons in orbitals with parity p is by itself a Poisson
distribution with f � fp 1 fn.

Above the pairing transition temperature and in
the independent particle model, f � �n� is evaluated
from the Fermi-Dirac distribution �n� �

P
a[p 
1 1

exp�b�ea 2 m���21, where the sum is over all orbitals of
parity p , and the chemical potential m is determined from
the total number of particles (in practice we use different
chemical potentials for protons and for neutrons). To
mimic interaction effects we use a single-particle spectrum
that corresponds to an axially deformed Woods-Saxon
potential. For an axial quadrupole deformation, parity
is a good quantum number, and we can estimate �n�
by summing over the Fermi-Dirac occupations of all
deformed orbitals with parity p .

To test how well the Poisson distribution (2) describes
the distribution P�n� of the occupation of the single-
particle states with parity p , we compare with the Monte
Carlo results. The probability to find n particles in
single-particle states with parity p is

P�n� �
TrA�e2bHd�n̂ 2 n��

TrAe2bH
�

ø
TrA�Usd�n̂ 2 n��

TrAUs

¿
W

.

(4)

The quantity inside the brackets of Eq. (4) is calculated
from a double projection on particle number A and occu-
pation number n of states with parity p ,
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TrA�Usd�n̂ 2 n�� �
1

N�Np 1 1�

NX
m�1

NpX
k�0

e2ifmAe2iwkn det�1 1 eifmeiwkIp Us� , (5)
where Ip is a diagonal matrix with diagonal elements
1 for each orbital of parity p and 0 otherwise. The
quadrature points are given by fm � 2pm�N and wk �
2pk��Np 1 1�, where N is the total number of single-
particle states and Np is the number of orbitals with parity
p. Us is the N 3 N matrix representing the propagator
Us in the single-particle space.

For nuclei in the iron region the occupation of the even-
parity orbital g9�2 is relatively small, and we choose n to
be the occupation of the g9�2 states. Using the complete
�pf 1 g9�2� shell we calculated the distributions P�n�
from Eqs. (4) and (5). The results are shown in Fig. 2 for
56Fe, 60Ni, and 68Zn at several temperatures (solid circles).
The solid lines are the Poisson distributions (2) with f
taken to be the average occupation of the g9�2 orbital (cal-
culated in the Monte Carlo). At high temperatures the mi-
croscopic distributions are well described by the Poisson
distribution, but for T & 1 MeV we observe deviations de-
scribing the enhancement of P�n� for even n and the sup-
pression for odd n due to pairing effects.

At lower temperatures T & 1 MeV, pairing must be
taken into account. We can still use Eq. (3), but now with
quasiparticles. Consequently, Eq. (2) is applicable where
n is replaced by the number of quasiparticles with parity
p, and f in Eq. (3) is the average occupation of quasipar-
ticle states with parity p .

As in the original BCS treatment [16], the occupation
probabilities have a component y2

a from condensed pairs
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FIG. 2. The distribution P�n� of the number of particles n
occupying the even-parity g9�2 orbitals. The solid circles are
the Monte Carlo results using (4). The solid lines are Poisson
distributions (2) with the same values of �n� calculated in the
Monte Carlo method.
and a component fa from quasiparticles. Minimizing the
free energy gives the quasiparticle occupation factor fa �
1��1 1 exp�bEa��, where Ea �

p
�ea 2 l�2 1 D2 and

the gap D and the chemical potential l (at finite T ) sat-
isfy self-consistency conditions. Since the condensed pair
occupations play no role in the parity of the states, one
should use only the quasiparticle f in Eq. (3),

f �
X

a[p

fa �
X

a[p

1
1 1 exp�bEa�

. (6)

We have applied the above model to determine the parity
ratio of levels for the three nuclei shown in Fig. 1. The de-
formation parameter d (used to calculate the single-particle
spectrum ea) is extracted from the experimental B�E2�
values [17] for the 21 ! 01 transition using B�E2� �
��3�4p�Zer2

0 A2�3d�2�5. We find (using r0 � 1.27 fm)
d � 0.22, 0.18, and 0.19 for 56Fe, 60Ni, and 68Zn, respec-
tively. The pairing gap D (at T � 0) is extracted from
odd-even mass differences and is used to determine the
pairing strength by a BCS calculation. The total occupa-
tion f of the quasiparticle even-parity states (6) is shown
by the solid lines in the left column of Fig. 3. Above the
critical BCS temperature f coincides with �n�. Below the
BCS temperature the average number of particles with par-
ity p is different from f and includes a contribution from
condensed pairs:
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FIG. 3. Left column: the solid lines are the occupation f of the
quasiparticle even-parity levels (6) versus b for 56Fe, 60Ni, and
68Zn. Above the BCS temperature f coincides with the average
occupation �n� of the even-parity states. The dashed lines show
�n� below the BCS temperature [Eq. (7)] while the dot-dashed
lines are calculated from the Fermi-Dirac occupations. Right
column: the ratio Z2�Z1 versus b calculated from (3) using the
occupations f shown on the left (solid, dashed, and dot-dashed
lines). For comparison we show by solid circles the Monte Carlo
results.
4315



VOLUME 84, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 8 MAY 2000
0 4 8 12 16
Ex

0

0.5

1.0
68Zn

0

0.5

1.0

ρ
/ρ −

+

60Ni

0

0.5

1.0

1.5
56Fe

FIG. 4. The parity ratio r2�Ex��r1�Ex� versus excitation en-
ergy Ex . The solid lines are calculated from Eqs. (3) and (6)
(see text), and the solid circles are obtained in the Monte Carlo
method of Ref. [13] (shown with error bars).
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The calculated �n� is shown by the dashed lines in Fig. 3.
The parity ratio Z2�Z1 is calculated from Eqs. (3) and (6)
and shown by the solid lines in the right column of Fig. 3.
The model describes well the Monte Carlo results (solid
circles).

Equation (3) expresses the ratio of the number of
odd- and even-parity levels at constant temperature.
To calculate the odd-to-even level density ratio at con-
stant excitation energy we use the Lang and LeCouteur
version [18] of the BBF for the total level density
r�Ex�, and calculate the total partition function from
Z�b� � e2bEg.s.

R
r�Ex�e2bEx dEx (Eg.s. is the ground

state energy). Using Z1 1 Z2 � Z and Eq. (3) for
Z2�Z1, we can determine Z6�b� � Z��1 1 tanh61f�
and calculate the thermal energies for even- and odd-parity
states from E6 � 2≠ lnZ6�≠b. We can then calculate
the canonical entropies and heat capacities from standard
thermodynamic relations and find the parity-projected
level densities r6�Ex�. Figure 4 shows the calculated ratio
r2�Ex��r1�Ex� in our model versus excitation energy
(solid lines) for 56Fe, 60Ni, and 68Zn. The results compare
well with the Monte Carlo calculations, shown by error
bars. Notice that the ratio r2�r1 behaves differently for
4316
68Zn and reaches �1 already at Ex � 8 MeV. This is
mainly due to the larger occupancy of the g9�2 orbit.

In conclusion, we have derived a simple formula for
the parity dependence of level densities. The formula de-
scribes the crossover from low excitation energies where
a single parity dominates to higher excitations where odd-
and even-parity states have equal densities, and agrees well
with shell model Monte Carlo calculations.
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