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Initial Energy Density of Gluons Produced in Very-High-Energy Nuclear Collisions
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In very-high-energy nuclear collisions, the initial energy of produced gluons per unit area per unit
rapidity, �dE�L2��dh, is equal to f�g2mL� �g2m�3�g2, where m2 is proportional to the gluon density
per unit area of the colliding nuclei. For an SU(2) gauge theory, a nonperturbative computation of
f�g2mL� shows that it varies rapidly for small g2mL but varies only by �25%, from 0.208 6 0.004 to
0.257 6 0.005, for a wide range 35.36–296.98 in g2mL. This includes the range relevant for collisions
at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Extrapolating to
SU(3), we estimate dE�dh for Au-Au collisions in the central region at RHIC and LHC.

PACS numbers: 24.85.+p, 12.38.Mh, 25.75.–q
The Relativistic Heavy Ion Collider (RHIC) at BNL will
soon collide beams of Au ions at

p
s � 200 GeV�nucleon.

Some years later, the Large Hadron Collider (LHC) at
CERN will collide heavy ions at

p
s � 5.5 TeV�nucleon.

The objective of these experiments is to understand the
properties of very hot and dense partonic matter in QCD.
It is of considerable interest to determine whether this hot
and dense matter equilibrates to briefly form a plasma of
quarks and gluons [1].

The dynamical evolution of such a system clearly de-
pends on the initial conditions, namely, the parton distri-
butions in the nuclei prior to the collision. For partons
with transverse momenta pt ¿ LQCD , cross sections in
the standard perturbative QCD approach may be com-
puted by convolving the parton distributions of the two
nuclei with the elementary parton-parton scattering cross
sections. At the high energies of RHIC (LHC), hundreds
(thousands) of minijets with pt’s of the order of several
GeV may be formed [2]. Final state interactions of these
minijets are often described in multiple scattering or in
classical cascade approaches [3]. Estimates for the initial
energy density in a self-screened parton cascade approach
can be found in Ref. [4].

At central rapidities, where x ø 1, and pt ¿ LQCD
with x defined to be pt�

p
s, parton distributions grow

rapidly, and may even saturate for large nuclei for x’s in
the range 1022 to 1023 relevant for nuclear collisions at
RHIC and LHC, respectively [5]. Coherence effects are
important here, and are included only heuristically in the
above-mentioned perturbative approaches.

In this Letter, we will describe results from a classical ef-
fective field theory (EFT) approach which includes coher-
ent effects in the small x parton distributions of large nuclei
[6]. If the parton density in the colliding nuclei is large
at small x, classical methods are applicable. It has been
shown recently that a renormalization group improved gen-
eralization of this effective action reproduces several key
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results in small x QCD: the leading aS log�1�x� Balitskii-
Fadin-Kuraev-Lipatov equation, the double log Gribov-
Levin-Ryskin equation and its extensions, and the small
x Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation for
quark distributions [7,8].

The EFT contains one dimensionful parameter m2,
which is the variance of a Gaussian weight over the color
charges r6 of partons, of each nucleus, at rapidities
higher than the rapidity of interest. For central impact
parameters, it is determined to be [9]
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where xq�x, Q2� and xg�x, Q2� stand for the nucleon quark
and gluon structure functions at the resolution scale Q of
the physical process of interest. Also, one has x0 � Q�

p
s,

r0 � 1.12 fm, and Nc is the number of colors. From the
Hadron Electron Ring Accelerator data for q and g, one
obtains m # 1 GeV for LHC energies and m # 0.5 GeV
at RHIC [9]. The classical gauge fields, and, hence, the
classical parton distributions, can be determined analyti-
cally [7,10]. On this basis, it has been argued recently that
the typical transverse momenta scale Qs in this model is
further in the weak coupling regime, with Qs � 1 GeV for
RHIC and Qs � 2 3 GeV at LHC [11].

Kovner, McLerran, and Weigert [12] applied the ef-
fective action approach to nuclear collisions. (For an
interesting alternative approach, see Ref. [13].) Assuming
boost invariance, and matching the equations of motion
in the forward and backward light cone, they obtained
the following initial conditions for the gauge fields in
the At � 0 gauge: Ai

�jt�0 � Ai
1 1 Ai

2 , and A6jt�0 �
6

ig
2 x6�Ai

1, Ai
2�. Here, Ai

1,2�r6� (i � 1, 2) are the pure
gauge transverse gauge fields corresponding to small
x modes of incoming nuclei [with light cone sources
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r6d�x7�] in the u�6x2�u�7x1� regions, respectively, of
the light cone.

The sum of two pure gauges in QCD is not a pure
gauge— the initial conditions therefore give rise to clas-
sical gluon radiation in the forward light cone. For pt ¿
aSm, the Yang-Mills equations may be solved perturba-
tively to quadratic order in aSm�pt . After averaging over
the Gaussian random sources of color charge r6 on the
light cone, the perturbative energy and number distribu-
tions of physical gluons were computed by several authors
[9,12,14], and shown, in the small x limit, to agree with
the well-known quantum bremsstrahlung result [15].

In Ref. [16], we suggested a lattice discretization of
the classical EFT, suitable for a nonperturbative numeri-
cal solution. Assuming boost invariance, we showed that,
in At � 0 gauge, the real time evolution of the small x
gauge fields A��xt , t�, Ah�xt , t� is described by the Kogut-
Susskind Hamiltonian in 2 1 1 dimensions coupled to an
adjoint scalar field. The lattice equations of motion for the
fields are then determined straightforwardly by computing
the Poisson brackets. The initial conditions for the evolu-
tion are provided by the lattice analog of the continuum
relations discussed earlier in the text. We impose peri-
odic boundary conditions on an N 3 N transverse lattice,
where N denotes the number of sites. The physical linear
size of the system is L � aN , where a is the lattice spac-
ing. It was shown in Ref. [17] that numerical computations
on a transverse lattice agreed with lattice perturbation the-
ory at large transverse momentum. For the numerical pro-
cedure, and other details, we refer the reader to Ref. [17].

In this Letter, we will focus on computing the energy
density ´ as a function of the proper time t. Our main
result is contained in Eq. (2). To obtain this result, we
compute the Hamiltonian density on the lattice for each
r6, and then take the Gaussian average (with the weight
m2) over between 40 r trajectories for the larger lattices
and 160 r trajectories for the smallest ones.

In our numerical simulations, all the relevant physical
information is compressed in g2m and L, and in their
dimensionless product g2mL [18]. The strong coupling
constant g depends on the hard scale of interest; from
Eq. (1), we see that m depends on the nuclear size, the cen-
ter-of-mass energy, and the hard scale of interest; L2 is the
transverse area of the nucleus [19]. Assuming g � 2 (or
aS � 1�p), m � 0.5 GeV (1.0 GeV) for RHIC (LHC),
and L � 11.6 fm for Au nuclei, we find g2mL � 120 for
RHIC and �240 for LHC. (The latter number would be
smaller for a smaller value of g at the typical LHC mo-
mentum scale.) As will be discussed later, these values of
g2mL correspond to a region in which one expects large
nonperturbative contributions from a sum to all orders in
�6aSm�pt , even if aS ø 1.

In Fig. 1, we plot ´t��g2m�3, as a function of g2mt, in
dimensionless units, for the smallest, largest, and an inter-
mediate value in the range of g2mL’s studied. The quantity
´t has the physical interpretation of the energy density of
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FIG. 1. ´t��g2m�3 as a function of g2mt for g2mL � 5.66
(diamonds), 35.36 (plusses), and 296.98 (squares). Both axes
are in dimensionless units. Note that ´t � 0 at t � 0 for all
g2mL. The lines are exponential fits a 1 be2gt including all
points beyond the peak.

produced gluons �dE�L2��dh only at late times—when
t � t. Though ´t goes to a constant in all three cases,
the approach to the asymptotic value is different. For the
smallest g2mL, ´t increases continuously before saturat-
ing at late times. Gluon distributions here are well defined
when ktt ¿ 1 (see Ref. [12])—we expect saturation to
occur when t ¿ L�2p and, indeed, that seems to be
the case.

For larger values of g2mL, ´t increases rapidly, devel-
ops a transient peak at t � 1�g2m, and decays exponen-
tially there onwards, satisfying the relation a 1 be2gt ,
to a constant value a [equal to the lattice �dE�L2��dh].
The lines shown in the figure are from an exponential fit
including all the points past the peak. This behavior is sat-
isfied for all g2mL $ 8.84, independently of N . Given the
excellent exponential fit, one can interpret the decay time
tD � �1�g��g2m as the appropriate scale controlling the
formation of gluons with a physically well-defined energy.
In other words, tD is the “formation time”in the sense used
by Bjorken [20,21]. In Table I, we tabulate g versus g2mL
for the largest N 3 N lattices [22] for all but the smallest
g2mL. For large g2mL, the formation time decreases with
increasing g2mL, as we expect it should.

In Fig. 2, we plot the asymptotic values a of ´t��g2m�3

as a function of g2ma for various values of g2mL. As
shown in the upper part of Fig. 2, for smaller g2mL, one
can go very close to the continuum limit with excellent
statistics (over 160 independent r trajectories for the two
smallest values of g2mL). In the lower part of Fig. 2,
all the data give straight line fits with good x-squared
values. We use these fits to extrapolate the value of a in the
continuum limit. We note that the largest value of g2mL,
with the smallest g2ma equal to 0.247, is relatively much
further away from the continuum limit than the points in
the upper part of the figure. It is obtained by averaging
40 independent trajectories on a 1200 3 1200 lattice. To
lower g2ma below 0.1 would require going to lattices with
3000 3 3000 sites. This exceeds the CPU memory of our
current computational resources. Nevertheless, even for
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TABLE I. The function f � �dE�L2��dh and the relaxation rate g � �1�tD��g2m tabulated as a function of g2mL. g has no
entry for the smallest g2mL since there ´t��g2m�3 vs g2mt differs qualitatively from the other g2mL values.

g2mL 5.66 8.84 17.68 35.36 70.7

f 0.436 6 0.007 0.427 6 0.004 0.323 6 0.004 0.208 6 0.004 0.200 6 0.004
g 0.101 6 0.024 0.232 6 0.046 0.165 6 0.013 0.275 6 0.011

g2mL 106.06 148.49 212.13 296.98
f 0.211 6 0.004 0.232 6 0.004 0.234 6 0.007 0.257 6 0.008
g 0.322 6 0.012 0.362 6 0.023 0.375 6 0.038 0.378 6 0.053
the largest g2mL, we do get a fine linear fit— though we
would warn of a potentially large systematic error in the
extrapolated value of ´t��g2m�3.

The physical energy per unit area per unit rapidity of
produced gluons can be defined in terms of a function
f�g2mL� as

1
L2

dE
dh

�
1
g2 f�g2mL� �g2m�3 . (2)

The function f here is obtained by extrapolating the values
in Fig. 2 to the continuum limit. In Fig. 3, we plot the
striking behavior of f with g2mL. For very small g2mL’s,
it changes very slightly but then changes rapidly by a factor
of 2 from 0.427 to 0.208 when g2mL is changed from
8.84 to 35.36. From 35.36 to 296.98, nearly an order of

FIG. 2. ´t��g2m�3 as a function of g2ma. The points in
the upper plot correspond to g2mL � 5.66 (diamonds), 8.84
(plusses), 17.68 (squares), and 35.36 (3). The lower plot has
g2mL � 70.7 (diamonds), 106.06 (plusses), 148.49 (squares),
212.13 (triangles), and 296.98 (3). Lines in the lower plot are
fits of form a 2 b 3 x. The g2ma ranges are different in the
two halves. The points in the upper half are typically closer to
the continuum limit.
magnitude in g2mL, it changes by �25%. The precise
values of f and the errors are tabulated in Table I.

The dramatic change in the behavior of f as a function
of g2mL can be traced to the initial conditions, namely,
the parton distributions in the wavefunctions of the in-
coming nuclei [23]. In the nuclear wave function, at
small x, nonperturbative, albeit weak coupling, effects be-
come important for transverse momenta Qs � 6asm. The
EFT predicts that classical parton distributions which have
the characteristic Weizsäcker-Williams 1�p2

t behavior for
large transverse momenta (pt ¿ Qs) grow only logarith-
mically for pt # Qs. One can therefore think of Qs as
a saturation scale [11] that tempers the growth of parton
distributions at small momenta.

The saturation condition, pt � 6aSm, roughly trans-
lates, on the lattice, into the requirement that g2mL $ 13
for the lowest momentum mode n � 1. Thus, for g2mL �
13, one only begins to sample those modes. Indeed, this is
the region in g2mL in which one sees the rapid change in
f. The rapid decrease in f is likely because the first non-
perturbative corrections are large, and have a negative sign
relative to the leading term. Understanding the later slow
rise and apparent saturation with g2mL requires a better
understanding of the number and energy distributions with
pt [24].

Our results are consistent with an estimate by Mueller
[25] for the number of produced gluons per unit area
per unit rapidity. He obtains �dN�L2��dh � c�N2

c 2

1�Q2
s �4p2aSNc, and argues that the number c is a nonper-

turbative constant of order unity. If most of the gluons have

FIG. 3. ´t��g2m�3 extrapolated to the continuum limit: f as
a function of g2mL. The error bars are smaller than the plotting
symbols.
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pt � Qs, then �dE�L2��dh � c0�N2
c 2 1�Q3

s �4p2aSNc

which is of the same form as our Eq. (2). In the g2mL
region of interest, our function f � 0.23 0.26. Using
the relation between Qs and g2m [11], we obtain c0 �
4.3 4.9. It is very likely that c0 is at least a factor of 2
greater than c. The latter will be determined more pre-
cisely when we compute the nonperturbative number and
energy distributions.

We will now estimate the initial energy per unit ra-
pidity of produced gluons at RHIC and LHC energies.
We do so by extrapolating from our SU(2) results to
SU(3) assuming the Nc dependence to be �N2

c 2 1��Nc

as in Mueller’s formula. At late times, the energy density
is ´ � �g2m�4f�g2mL�g�g2mL��g2, where the formation
time is tD � �1�g�g2mL���g2m as discussed earlier.
We find that ´RHIC � 66.5 GeV�fm3 and ´LHC �
1300 GeV�fm3. Multiplying these numbers by the
initial volumes at the formation time tD , we obtain the
classical Yang-Mills estimate for the initial energies
per unit rapidity ET to be ERHIC

T � 2700 GeV and
ELHC

T � 25 000 GeV, respectively.
Compare these numbers to results presented recently by

Kajantie [26] for the minijet energy (computed for pt .

psat, where psat is a saturation scale akin to Qs). He
obtains ERHIC

T � 2500 GeV and ELHC
T � 12 000. The

remarkable closeness between our results for RHIC is very
likely a coincidence. Kajantie’s result includes a K factor
of 1.5—estimates range from 1.5–2.5 [27]. If we pick a
recent value of K � 2 [28], we obtain as our final estimate
ERHIC

T � 5400 GeV and ELHC
T � 50 000 GeV.

In summary, we performed a nonperturbative, numerical
computation, for a SU(2) gauge theory, of the initial en-
ergy, per unit rapidity, of gluons produced in very-high-
energy nuclear collisions. Extrapolating our results to
SU(3), we estimated the initial energy per unit rapidity
at RHIC and LHC. We plan to improve our estimates by
performing our numerical analysis for SU(3). Moreover,
computations are in progress to determine the energy and
number distributions [24].
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