
VOLUME 84, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 8 MAY 2000

4272
Predicting the Liquid-Vapor Critical Point from the Crystal Anharmonicity
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A “universal” dependence is predicted of the reduced critical parameters, kBTc

E0
�g�, Vc

V0
�g�, and

PcVc�kBTc � Zc�g�, on the crystal anharmonicity g (closely related to the Grüneisen parameter GG).
It is based on a simplified embedded-atom type approach which enables one to utilize the universal
zero-temperature equation of state in a version of fluid perturbation theory. This model’s critical
temperature and density agree with the experimental results for both the heavy rare gases (g � 2.85) and
heavy alkali metals (g � 1.35). Predicted critical parameters for many other liquid metals are consistent
with previous estimates, but the model is not applicable when directional bonding is important.
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The equation of state of materials reflects the nature of
the interatomic interactions and is of fundamental impor-
tance in basic and applied science [1,2]. The parameters
of the critical point (temperature Tc, density rc � 1�Vc,
and pressure Pc) of the liquid-vapor transition of metals
are of much interest as an essential part of the equation of
state of the liquid [3–8]. However, because of the gener-
ally extreme temperatures involved they have been inac-
cessible to direct measurement except for very few cases,
notably alkali metals [9–11] and mercury [12]. On the
other hand, a great deal of effort has been invested over
the years in order to estimate the critical parameters from
available data at lower temperatures, using, e.g., corre-
sponding states arguments for the saturated vapor pressure
with a constant heat of vaporization, and the law of rec-
tilinear diameter [4,13,14]. There is a large spread in the
estimated values given by different authors, as discussed
in general [7] and for the particular case of tungsten [15],
and as detailed for the alkali metals and mercury [8]. Theo-
retical models aimed at providing estimates of the critical
parameters across the whole table of the elements were in-
variably based on the van der Waals picture, with hard-
sphere [3] or soft-sphere [5] repulsive interactions. More
sophisticated perturbation theories for classical fluids [16],
in agreement with computer simulations, could success-
fully reproduce the experimental Tc and Vc of the rare
gases [17] by corresponding states using the Lennard-Jones
pair potential [18,19]. However, a comprehensive treat-
ment of liquid metals cannot rely on a pair potential pic-
ture. At present, neither first principles calculations, e.g.,
[20], nor sophisticated models [21,22] are predicting accu-
rately the critical parameters of the alkali metals.

In this Letter I consider an intermediate approach
[23,24], close in spirit to the “glue” or “embedded-atom”
[25] methods, which from the statistical mechanics
point of view is about as accurate as the approximations
applied for the rare gases, yet is simple enough to enable
application to liquid metals across the whole table of
elements. The model free energy of the fluid combines
a hard-sphere perturbation theory with an empirical
0031-9007�00�84(19)�4272(4)$15.00
“universal” expression for the zero-temperature cohesive
energy of the corresponding crystal as a function of
volume. It predicts a universal dependence of the reduced
critical parameters on the crystal anharmonicity (which is
closely related to the Grüneisen parameter). This model
is apparently the first to predict Vc and Tc in reasonable
agreement with the available data for both the heavy rare
gases and the heavy alkali metals. Like other mean-field
approaches it tends to predict rather much too high values
for Pc. The predicted critical parameters for many other
“normal” liquid metals are generally consistent with
previous estimates, but the model is not applicable when
directional bonding is important.

The present approach is made of two separate ingredi-
ents, both known for a long time, that when put together in
the context of the critical point can provide new insights.
The first ingredient is a special variant of fluid perturba-
tion theory [23,24]. Consider the potential energy of an
atom in the field of neighboring atoms, F. For the par-
ticular configuration of neighbors of the solid it is given
by the cohesive energy E. However, for the fluid F must
be averaged over many configurations of neighbors that
are different from those of the solid. In order to be able to
treat also liquid metals, where the assumption of additive
pair potentials is very poor, Kerley [23] invoked a physical
picture by which the fluid is assumed to be a mixture of
solidlike clusters of many different densities, and the en-
ergy of an atom in a particular cluster is closely related to
what it would have in the solid at the same density. He
approximated F�V �, for a given fluid configuration, by
the zero-Kelvin isotherm of the solid, E�Vs�, having the
same nearest neighbor distance, Rs, as that of the given
fluid configuration, with corrections for vacancies. This
approach utilizes E�Vs� and requires the distribution of
first nearest neighbor distances p�Rs� in order to calculate
the potential energy. In analogy with the case of pairwise
additive interactions f�r� which require the pair distribu-
tion function g�r� in order to calculate the potential energy,
Kerley’s method enables one to employ fluid perturbation
theory with the hard spheres as a reference system. This
© 2000 The American Physical Society
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methodology, as analyzed in some detail in [24], represents
a simplified embedded-atom type approximation [25]. The
second ingredient is the surprising discovery of the early
1980s that the zero-temperature equations of state of co-
valent and metallic solids, when suitably scaled, fall on a
universal family of curves [26–28]. The scaled cohesive
energy of crystals, E�E0, as a function of the scaled spe-
cific volume, V�V0, is well approximated by a universal
function, E

E0
� V

V0
, g�, requiring as input only the equilib-

rium values of the volume V0, energy E0, and bulk modu-
lus B0. It depends parametrically on g � � B0V0

E0
�1�2, which

is a measure of the crystal anharmonicity, closely related
to the Grüneisen parameter GG [1]. Indeed, this enables
us to construct a fluid model, without any adjustable pa-
rameters, that utilizes the universal function E

E0
� V

V0
, g� as

the only information about the interaction energy. The re-
sulting model free energy for the fluid includes the con-
tributions from electronic binding, and the thermal atomic
motion in the force field created by the electrons. If, for
simplicity, we keep the electrons in the ground state, and
ignore the contributions from thermal electronic excita-
tions, then (independent of the specific details of how the
universal function is utilized) the critical parameters from
a model thus constructed must obey a generalized “law
of corresponding states” by three universal functions of
the anharmonicity parameter g, i.e., kBTc

E0
�g�, Vc

V0
�g�, and

PcVc�kBTc � Zc�g�. The underlying approximations are
expected to hold for both the rare gases and alkali metals,
which represent two rather extreme values of the parameter
g. The available experimental values, together with the re-
sults of a specific model along these lines described below,
can be used in order to construct the predicted three univer-
sal functions by interpolation (Fig. 1). These can provide
estimates for many liquid metals for which the model is
expected to provide a good approximation.

There are in principle different possibilities to approxi-
mately incorporate the zero-Kelvin isotherm into a fluid
model, and the following model free energy [23,24], which
is based on the hard-sphere perturbation theory [16], was
used in the present work:

F���V , T , s�V , T ���� � FHS�V , T , s� 1 �F�HS . (1)

FHS is the free energy for a fluid of hard spheres of
diameter s, and �F�HS is an average of F over all
configurations of the hard-sphere fluid. Adopting Kerley’s
approximation [23,24] F�V � � Vs

V E�Vs�, then �F�HS is
given by an integral of the form

R
E�Vy3�G� y, h� d3y,

where h �
ps3

6V is the packing fraction, and G� y, h� is
related to the short range part of the hard-sphere radial dis-
tribution function, g� y � r�s, h�. The optimal diameter
s�V , T � is defined by a variational principle, ≠F�≠s � 0.
This specific model has already been applied successfully
to a variety of fluids, and is detailed in [23,24]. In order to
further check its accuracy as a statistical theory this model
of fluids was applied to various systems with known pair
FIG. 1. Reduced critical parameters as functions of the an-
harmonicity parameter g. The lines are the predictions of the
present theory, and the symbols represent the experimental re-
sults for rare gases and alkali metals (see Tables I and II).

potentials f�r� from which the inputs E�Vs� were cal-
culated as lattice sums. The results were compared with
simulations, and with the corresponding standard
hard-sphere perturbation theory which employs directly
the same pair potentials. For the Lennard-Jones (LJ)
type systems it was found that provided it employs
E�Vs� obtained as lattice sum for a close-packed lat-
tice (fcc or hcp), it is of comparable accuracy to the
corresponding theory which employs the pair poten-
tial as input: For the critical parameters of the LJ
(12-6) potential (kBTc�e, Vc�s3, Pcs3�e) it predicts
(1.385, 3.21, 0.16) in comparison with the simulations [19]
(1.313, 3.23, 0.13) and ordinary perturbation theories [18]
(1.32 2 1.36, 2.78 2 3.33, 0.13 2 0.17), respectively.

In combination with the universal zero-Kelvin energy
[26–28], this model can now provide a more general out-
look. The zero-temperature universal scaled binding en-
ergy is well approximated by [28]

E�V �
E0

� 2�1 1 a 1 0.05a3�e2a, (2)

where a is a dimensionless scaled length defined by a �
3g�x 2 1�, with x �

rWS

rWSE
� � V

V0
�1�3 representing a re-

duced average interparticle distance, and rWS , rWSE are,
respectively, the Wigner-Seitz radius and its value at the
equilibrium density. From the zero-temperature equation
of state P � 2� ≠E

≠V � one finds that the isothermal bulk
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TABLE I. Critical parameters of rare gases. Experimental results compared with the
present theory.

Element g Method Tc (K) rc (g�cm3) Pc (bar) kBTc�E0 Vc�V0 Zc

Ne 2.794 expt. [17] 44.4 0.48 27.3 0.195 3.12 0.31
present 36.9 0.44 27.0 0.162 3.42 0.40

Ar 2.889 expt. [17] 150.7 0.53 48.6 0.163 3.33 0.29
present 149.4 0.52 67.0 0.161 3.38 0.41

Kr 2.856 expt. [17] 209.3 0.91 54.9 0.157 3.40 0.29
present 215.6 0.91 80.0 0.162 3.41 0.41

Xe 2.829 expt. [17] 289.7 1.09 58.9 0.152 3.46 0.28
present 308.9 1.11 88.0 0.162 3.40 0.40
modulus B � 2V � ≠P
≠V �T is given at equilibrium by B0 �

E0g2

V0
, and its pressure derivative B0 � � ≠B

≠P �T at equilib-
rium is B0

0 � 1 1 2.3g. By comparison, the Dougdale-
McDonald expression [1] for the equilibrium Grüneisen
parameter �GG,DM�0 is B0

0 � 1 1 2�GG,DM�0. The univer-
sal scaling, E

E0
� V

V0
, g�, requires only E0, B0, and V0, in

order to predict the full zero-temperature equation of state.
These input parameters (and thus g) are readily available
(in this work we used the tables in [2]), and for the ma-
jority of metals the anharmonicity g is between 1 and 2.
The model free energy thus obtained from Eqs. (1) and (2)
predicts a one parameter universal scaled fluid equation
of state of the form PV0

E0
�V�V0, kBT�E0, g�. This universal

equation of state gives rise to the universal critical parame-
ters Vc

V0
�g�, kBTc

E0
�g�, PcVc�kBTc � Zc�g�, as presented in

Fig. 1 and in Tables I and II.
The results for the critical densities and tempera-

tures of the heavier rare gases agree well with the
experimental values, while Zc has van der Waals–like
values (see Table I) as expected from such a mean-field
model. These results are in accord with those for the
Lennard-Jones system given above. From theoretical
cohesive energy calculations it can be expected that alkali
metals in a hypothetical fcc or hcp structure also obey the
universal scaled form with about the same value of g as
in their physical bcc structure. The present model predicts
correctly the available experimental critical densities and
temperatures of the alkali metals (Table II), but again with
mean-field van der Waals–like values for Zc (yet smaller
than for the rare gases, in agreement with the experimental
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trend). It should be emphasized that the predicted larger
Vc

V0
of the alkalis automatically accounts for their more

asymmetric coexistence region in the ( T
Tc

, r

rc
) plane. The

present approach also accounts well for the experimental
critical parameters of heavy molecular gases, and can treat
also the lighter rare gases (and also molecular hydrogen)
by adding quantum corrections to the model free energy
[24]. The predicted universal critical parameters for
metals across the whole table of elements are comparable
to estimates in the literature based on experimental
liquid-vapor coexistence data. In particular, the predicted
critical temperatures are comparable to those estimated by
[4] and [13] from experimental liquid-vapor coexistence
data, while the predicted critical densities are closer to
those estimated by [13]. We do not present these many
results on Fig. 1 since the large uncertainty of these
estimates and the large spread in the estimated values
as given by different authors do not allow at present a
more meaningful check of the predicted scaling with the
anharmonicity g. The model predicts a maximum value
of kBTc

E0
�g� � 0.21 at g � 1.13, which should eventually

be checked experimentally and further investigated.
The present simple model has some obvious shortcom-

ings and, like many before, it leaves much to be desired. It
is unable to account for the estimated deviations in the re-
duced critical parameters between Li and Na [10] and the
heavier alkalis. When directional bonding is important,
it is expected that the universal equation of state and the
Kerley model of fluids [23] may not be accurate. This
could be the reason why the universal reduced critical
TABLE II. Critical parameters of alkali metals. Experimental results compared with the
present theory.

Element g Method Tc (K) rc (g�cm3) Pc (kbar) kBTc�E0 Vc�V0 Zc

K 1.333 expt. [11] 2180 0.18 0.15 0.202 5.02 0.17
present 2240 0.19 0.32 0.207 4.71 0.35

Rb 1.367 expt. [9] 2020 0.29 0.12 0.204 5.63 0.22
present 2040 0.35 0.24 0.207 4.66 0.35

Cs 1.337 expt. [9] 1920 0.38 0.09 0.205 5.28 0.20
present 1940 0.42 0.18 0.207 4.71 0.35
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parameters cannot account for the experimental results (see
Table 16.2 in [2]) for As, Se, and Hg, all having particu-
larly small value of Vc

V0
� 2.5. The model also ignores elec-

tronic excitations which can be important when estimating
critical temperatures of the order of 1 eV, or for certain
special elements, and it does not treat the metal-insulator
transition. Nevertheless, it raises the interesting possibil-
ity of a rather general approximate universal scaling of the
critical parameters with the crystal anharmonicity, and pro-
vides concrete insight about major differences between the
critical parameters of the rare gases and the alkali metals.

I thank Igor Iosilevski for interesting correspondence
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