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Resonant Phase Patterns in a Reaction-Diffusion System
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Resonance regions similar to the Arnol’d tongues found in single oscillator frequency locking are
observed in experiments using a spatially extended periodically forced Belousov-Zhabotinsky system.
We identify six distinct 2:1 subharmonic resonant patterns and describe them in terms of the position-
dependent phase and magnitude of the oscillations. Some experimentally observed features are also
found in numerical studies of a forced Brusselator reaction-diffusion model.

PACS numbers: 82.40.Ck, 05.45.Xt, 05.65.+b, 47.54.+r
Frequency locking of a nonlinear oscillator to an
external periodic perturbation is exhibited by all physical,
chemical, and biological oscillators. The temporal re-
sponse of a single oscillator to a small amplitude time-
periodic stimulus is either quasiperiodic (unlocked) or
periodic (locked), depending on the values of the two
external control parameters—the forcing amplitude g and
the forcing frequency f. Larger values of g yield locking
over a broader range of detuning from exact resonance.
The frequency-amplitude plane shows tongue-shaped
regions of resonance (“Arnol’d tongues”) and exhibits
many of the features of frequency locking for a single
oscillator. Entrainment of oscillating systems to external
periodic stimuli has been well studied in one-dimensional
maps [1], ordinary differential equation models [2], and
experiments [3]. The entrainment of spiral tip trajectories
in spatially extended excitable systems has also been
studied [4]. However, much less is known about the
effect of a time-periodic stimulus on spatially extended
oscillatory systems such as arrays of Josephson junctions
and biological systems with circadian rhythms.

The response of a spatially extended system of oscil-
lators is more complicated than that of a single oscillator
since it is possible for different points in the frequency-
locked continuum to oscillate with different magnitudes
and phases with respect to each other. Previous studies of
resonance in periodically forced pattern-forming systems
[5–8] did not examine the dependence on both f and g,
which is the subject of this paper.

We have examined the effect of periodic forcing on
a spatially extended system of oscillators, the Belousov-
Zhabotinsky (BZ) reaction in a thin gel layer. The photo-
sensitive reaction-diffusion system is forced periodically
with spatially uniform, time-periodic pulses of light. We
find that the Arnol’d tongue regions observed for single
oscillator locking persist in this continuum system. We
will describe the observations and then show how differ-
ent patterns can be distinguished by the phase relation
between different points in a pattern. Our quasi-two-
dimensional reactor is a thin membrane (0.4 mm thick,
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22 mm diameter) that has both faces in contact with con-
tinuously refreshed reservoirs of reagents for the BZ re-
action [9]. Continuous feeding maintains the medium in
a nonequilibrium state. The underlying temporal dynam-
ics in the reactor are oscillatory, and the unforced pattern
is traveling spiral waves of the ruthenium catalyst Ru(II)
concentration. Regions of higher Ru(II) concentrations ap-
pear darker in images.

Figure 1 shows the 2:1 resonance tongue as a function
of the applied light intensity g2 and the perturbation fre-
quency f; for each data point within the solid lines in Fig. 1
the temporal power spectrum of the intensity time series for
any spatial point in the pattern exhibits a large, sharp re-
sponse at one-half the forcing frequency. The subharmonic
2:1 resonance tongue is discussed here; other resonance
tongues will be described elsewhere. The bending of the

FIG. 1. A 2:1 resonant tongue in the frequency-intensity plane
for the experimental system. The patterns (points) within the
solid curves resonate at one-half the forcing frequency. The
small dots outside the curves are non-2:1-resonant. The pertur-
bation is spatially uniform square-wave light pulses of intensity
g2, the square of the light amplitude. See Fig. 2 to connect the
symbols and letters to a pattern: 1 (b); � (c); * (d); � (e);
� (f ); � (g).
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2:1 tongue toward higher frequencies at low amplitude is a
characteristic of the BZ reaction—the natural frequency of
the oscillations is g dependent. Normalizing the f axis by
the natural frequency is not feasible because we cannot ac-
curately measure the homogeneous natural oscillation fre-
quency at low forcing amplitudes. There are places in the
control-parameter space shown in Fig. 1 where different
symbols overlap because of a slow drift in the parameter
values over several months; there is no evidence for mul-
tiplicity of pattern states.

Figure 2 shows the different patterns observed within the
2:1 resonance tongue. We distinguish between the patterns
with an analysis that uses both the temporal and spatial in-
formation; our technique should be useful in quantifying
patterns in other systems. We use a finite width frequency
filter to extract the complex Fourier amplitude a of the tem-
poral subharmonic response of the pattern mode [10]. This
is the experimental analog of determining the complex am-
plitude of the appropriate amplitude equation. Graphs of
the complex Fourier amplitude coefficient (at f�2) yield
information about the relative phase-locked angle and os-
cillation magnitude of adjacent discretized oscillators in
the different patterns.

Figure 3 illustrates the information that can be extracted
from the complex Fourier amplitude plots (henceforth re-
ferred to as phase portraits). The real space images in
the top row show a portion of an unforced rotating spiral
wave pattern [Fig. 3(a)] and a subharmonic standing wave
FIG. 2 (color). (top row) Reactor images �9 3 9 mm2� of different observed patterns, presented using a rainbow (false) color map:
(a) unforced rotating spiral wave, (b) rotating spiral wave, (c) mixed rotating spiral and standing wave pattern, (d)–(g) qualitatively
different standing wave patterns. Patterns (b)–(g) exhibit a 2:1 resonance in the temporal power spectrum of the pattern. (middle
row) The complex Fourier amplitude a for each image: the abscissa is Re�a�; the ordinate is Im�a�. Each point in the complex
plane corresponds to the temporal Fourier amplitude a of a pixel in the image after frequency demodulation at f�2. (bottom row)
Histograms of phase angles of all the pixels in each image; the abscissa range is �0, 2p� radians and the ordinate range is arbitrary.
Chemical conditions are given in [9]. For each pattern the parameter values of f�Hz� and g2�W�m2� are, respectively, (a) 0, 0;
(b) 0.1000, 119; (c) 0.0625, 214; (d) 0.0556, 248; (e) 0.0417, 358; (f ) 0.0455, 386; (g) 0.0385, 412, and correspond to the circled
points in Fig. 1.
pattern [Fig. 3(b)]. The points in each real space image
labeled A, B, C and D, E span the dynamic range of the
patterns. The plot below each real space image is a corre-
sponding phase portrait. The point labeled A in the com-
plex plane is the complex Fourier amplitude coefficient a
of the f�2 mode for the pixel labeled A in the real space
image, and similarly for points B E. Through the dis-
tribution and connectivity of the Fourier coefficients, the
phase portrait shows the distribution of oscillation phases
and magnitudes along the dashed line in the real space im-
ages. The phase portrait of the unforced spiral pattern in
Fig. 3(a) is a circle, indicating that the phase angles of the
discretized oscillations in one wavelength of the unforced
traveling spiral wave are distributed monotonically from 0
to 2p and have a uniform magnitude. In contrast, for the
standing wave pattern shown in Fig. 3(b), the phase por-
trait shows that the oscillations remain p out of phase on
either side of the zero amplitude oscillation node, and the
magnitude of the oscillations decreases monotonically as
the node is approached.

Pairs of reactor images and phase portraits are shown
in Fig. 2 for the different patterns observed within the 2:1
tongue. A histogram of the phase angles is shown directly
below each phase portrait. In Figs. 2 and 5, a is plotted
for all pixels in the image, and the lines connecting adja-
cent pixels are not shown. The interpretation of the spatial
distribution of the oscillations in the unforced rotating spi-
ral in Fig. 2(a) and in the Ising front pattern in Fig. 2(g)
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FIG. 3. Reactor images and the corresponding complex
Fourier amplitude plots for (a) an unforced rotating spiral
pattern ( f � 0, g2 � 0) and (b) a standing wave Ising front
pattern ( f � 0.0380 Hz, g2 � 412 W�m2). The reactor images
are 4.5 3 4.5 mm2 and 9 3 9 mm2, respectively, and chemical
conditions are given in [9].

is the same as that given above for Figs. 3(a) and 3(b),
respectively.

The forced complex Ginzburg-Landau (CGL) equation
that describes subharmonic 2:1 resonance close to a Hopf
bifurcation [6,8] predicts patterns with domains of syn-
chronous oscillations phase shifted by p. The p-shifted
phase domains are separated from one another by either
stationary or traveling phase fronts. The values of the con-
trol parameters determine which of these two phase fronts
is stable. Our experiments are conducted for conditions far
beyond a Hopf bifurcation, but two of the observed pat-
terns, labyrinths and Ising fronts [cf. Figs. 2(f) and 2(g)],
exhibit the predicted behavior—they are standing wave
patterns with p-shifted domains of synchronous oscilla-
tions connected by stationary fronts.

In contrast, the gradient of phase angles in the pattern
in Fig. 2(b) is so small that there are no distinguish-
able phase fronts. In the 2:1 frequency-locked patterns
[Figs. 2(c)–2(e)] there is also a more continuous dis-
tribution of the relative oscillation phase, indicated by
the “S”-shaped distribution of the Fourier coefficients
in the complex plane. The phase-angle distribution is
weighted differently around two p-shifted phases, de-
pending on the values of g2 and f, as can be seen more
clearly in the histograms plotted in the bottom row of
Fig. 2.

We have also conducted numerical simulations of
frequency locking in a reaction-diffusion system with
Brusselator kinetics, which is not a model of the BZ
reaction but is a simple oscillating chemical system with
two chemical species,
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where the parametric forcing term is g sin�2pft�u2y, Du

and Dy are the diffusion coefficients of species u and y,
and A and B are constant parameters corresponding to feed
concentrations. Figure 4 shows the 2:1 Arnol’d tongue for
this model and for the corresponding homogeneous system
(Du � Dy � 0). Other resonant tongues also exist but we
present here only the 2:1 case. With diffusion, two-phase
spirals [e.g., Fig. 5(b)], labyrinths [Fig. 5(c)], and Ising
front [Fig. 5(d)] patterns form within the tongue, while un-
locked spiral patterns occur outside the tongue [Fig. 5(a)].
The phase portrait in Fig. 5(b) shows no zero crossings at
the phase fronts (no nodes), indicating that the pattern is
a traveling wave (a Bloch spiral [8]). The phase of the
oscillations varies continuously as one passes from one
phase-synchronous domain to the other. In contrast, the
phase portraits of the standing wave patterns in Figs. 5(c)
and 5(d) show that the phase angle remains fixed and the
oscillation magnitude monotonically decreases as the node
of a phase front is approached; the phase angle abruptly
changes sign (from 2p to p) at the node. This type of
phase front is also observed in the laboratory system; see
Figs. 2(f) and 2(g). While we do not find a one-to-one cor-
respondence between the simulation and the experimental
patterns, we note that we have not conducted a complete
exploration of either system’s multiparameter space where
other patterns may exist.

FIG. 4. A 2:1 Arnol’d tongue for the Brusselator model with
parametric forcing (A � 0.5, B � 1.5, Du � 0.2Dy), where
f0 � 0.41 is the natural frequency of the unforced, homoge-
neous system. Lines show the locked-unlocked transition in the
homogeneous case [Du � Dy � 0 in Eqs. (1) and (2)]. Sym-
bols represent the case with diffusion: �3� unlocked rotating
spirals, (*) traveling (Bloch) phase fronts, (�) labyrinths, (�)
stationary (Ising) phase fronts. The tongue for the reaction-
diffusion system is slightly narrower than that for the homoge-
nous system.
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FIG. 5. (top row) Patterns in the Brusselator model: (a) un-
locked rotating spiral wave, (b) two-phase spiral, (c) labyrinth,
(d) Ising front pattern. (middle row) Fourier amplitude complex
plane phase portraits. (bottom row) Histograms of phase angle
for all the pixels in each image. In all cases, values for the
parameters are A � 0.5, B � 1.5, and the initial conditions are
perpendicular spatial gradients in U and V . Values of the pa-
rameters f�f0 and g are, respectively, (a) 1.58, 0.05; (b) 2.12,
0.05; (c) 2.40, 0.06; (d) 1.66, 0.07. See Fig. 2 caption for ordi-
nate and abscissa axis labels.

In conclusion, in both laboratory experiments and a
reaction-diffusion model we have found a resonant tongue
structure that is similar to the well-studied Arnol’d tongues
found in low-dimensional systems (maps and ordinary dif-
ferential equations). The frequency-locked patterns in the
experiment and model fit the selection criteria predicted
by an analysis of the CGL equation, for certain ranges of
the parameters f and g. Additionally, some of the ex-
perimental resonant patterns show more complicated dy-
namics, e.g., a continuous distribution of phase-locked
angle, resulting in no definable phase fronts. These obser-
vations provide a description of the self-organizing behav-
ior of an oscillatory reaction-diffusion continuum exposed
to time-periodic external perturbation.
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