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Entanglement Teleportation via Werner States
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Transfer of entanglement and information is studied for quantum teleportation of an unknown entan-
gled state through noisy quantum channels. We find that the quantum entanglement of the unknown
state can be lost during the teleportation even when the channel is quantum correlated. We introduce
a fundamental parameter of correlation information which dissipates linearly during the teleportation
through the noisy channel. Analyzing the transfer of correlation information, we show that the purity of
the initial state is important in determining the entanglement of the replica state.
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The nonlocal property of quantum mechanics enables
a striking phenomenon called quantum teleportation. By
quantum teleportation an unknown quantum state is de-
stroyed at a sending place while its perfect replica state
appears at a remote place via dual quantum and classical
channels [1,2]. For the perfect quantum teleportation, a
maximally entangled state, e.g., a singlet state, is required
for the quantum channel. However, the decoherence ef-
fects due to the environment make the pure entangled state
into a statistical mixture and degrade quantum entangle-
ment in the real world. Popescu [3] studied the quantum
teleportation with the mixed quantum channel and found
that, even when the channel is not maximally entangled, it
has fidelity better than any classical communication pro-
tocol. For a practical purpose, a purification scheme may
be applied to the noisy channel state before teleportation
[4–6].

Earlier studies have been confined to the teleportation of
single-body quantum states: quantum teleportation of two-
level states [1], N-dimensional states [7], and continuous
variables [8,9]. In this Letter, we are interested in telepor-
tation of two-body entangled quantum states, especially
regarding the effects of the noisy environment. Direct
transmission of an entangled state was considered in a
noisy environment [10]. A possibility to copy pure entan-
gled states was studied [11]. Extending the argument of
the single-body teleportation we can easily show that an
entangled N-body state can be perfectly teleported using
the N maximally entangled pairs for the quantum channel.
However, for the noisy channel, it is important and non-
trivial to know how much the entanglement is transferred
to the replica state and how close the replica state is to the
original unknown state, depending on the entanglement of
the unknown state and channel state.

Bennett et al. [1] argued that teleportation is a linear
operation for the perfect quantum channel so that it would
also work with mixed original states and could be extended
to what is now called entanglement swapping [12]. We
rigorously found that teleportation is linear even for the
mixed channel, considering the maximization of the aver-
age fidelity [13]. With the property of the linearity, one
0031-9007�00�84(18)�4236(4)$15.00
may conjecture that quantum teleportation preserves the
nature of quantum correlation in the unknown entangled
state if the channel is quantum mechanically correlated.
We investigate this conjecture.

In this Letter, the original unknown state is assumed to
be in an entangled two-body pure spin-1�2 state and the
noisy quantum channel will be represented by a Werner
state [14]. We define the measure of entanglement for the
two spin-1�2 system and study the transfer of entangle-
ment in the teleportation. We find that for the quantum
channel there is a critical value of minimum entangle-
ment required to teleport quantum entanglement. This
minimum entanglement is understood by considering the
transfer of entanglement and correlation information. The
newly defined correlation information, which dissipates
linearly during the teleportation through the noisy chan-
nel, is related to quantum entanglement for a pure state,
and may also be related to classical correlation for a mixed
state. Analyzing the transfer of correlation information, it
is shown that the purity of the initial state is important in
determining the entanglement of the replica state.

Before considering the entanglement teleportation pro-
tocol, we define a measure of entanglement. Consider a
density matrix r̂ and its partial transposition ŝ � r̂T2 for
a two spin-1�2 system. The density matrix r̂ is insepara-
ble if and only if ŝ has any negative eigenvalues [15,16].
The measure of entanglement E� r̂� is then defined by

E� r̂� � 22
X

i

l2
i , (1)

where l
2
i is a negative eigenvalue of ŝ. It is straightfor-

ward to prove that E� r̂� satisfies the necessary conditions
required for every measure of entanglement [13,17].

The entanglement teleportation is schematically plotted
in Fig. 1. The sender’s unknown state r̂12 is prepared by
the source S. Two independent EPR pairs are generated
from E (one pair numbered 3 and 5, the other pair num-
bered 4 and 6 in Fig. 1). When a noisy environment is con-
sidered, its effects are attributed to the quantum channels,
and the perfect EPR pair becomes mixed. By applying ran-
dom SU�2� operations locally to both members of a pair a
© 2000 The American Physical Society
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FIG. 1. Schematic drawing of entanglement teleportation. An
unknown quantum entangled state is generated by the source
S, and its particles are distributed separately into A1 and A2.
The quantum channels Q1 and Q2 are represented by Werner
states. The result of the Bell-state measurement at Ai �i � 1, 2�
is transmitted through the classical channels Ci . The teleporta-
tion is completed by unitarily transforming at Bi according to
the classical information.

general mixed two-body state becomes a highly symmet-
ric Werner state which is SU�2� ≠ SU�2� invariant [4,14].
For example, the quantum channel Q1 is represented by
the density matrix ŵ35 of purity �F35 1 1��2 [14]:

ŵ35 �
1
4

√
I ≠ I 2

2F35 1 1
3

X
n

sn ≠ sn

!
, (2)

where sn is a Pauli matrix. The parameter F35 is related
to the measure of entanglement E35, i.e., E35 � E�ŵ35� �
max�0, F35�. To make our discussion simpler, we assume
that the two independent quantum channels are equally
entangled, i.e., E35 � E46 � Ew . In other words, F35 �
F46 � Fw . This assumption can be justified as the two
quantum channels are influenced by the same environment.

At Ai , a Bell-state measurement is performed on the par-
ticle i from S and one of the pair, i 1 2, in the quantum
channel Qi . The Bell-state measurement at Ai is then rep-
resented by a family of projectors P̂a

i � jC
a
i � �Ca

i j with
a � 1, 2, 3, 4, where jCa

i � are the four possible Bell states
[18]. The joint measurements at A1 and A2 project the to-
tal density matrix r̂ onto the Bell states jC

a
1 � and jC

b
2 �,

respectively, with the probability Pab � TrP̂a
1 P̂

b
2 r̂. The

probability Pab is 1�16 which is a characteristic of the
Werner state. After receiving the two-bit information on
the measurements through the classical channels C1 and
C2, the unitary transformations Ûa

1 and Û
b
2 are performed

on the particles 5 and 6 accordingly.
By the unitary transformations, we reproduce the un-

known state at B1 and B2 if the channel is maximally
entangled. In choosing Ûa

i , an important parameter to
consider is the fidelity F defined as the distance between
the unknown pure state r̂12 and the replica state r̂78:
F � Trr̂12r̂78. If r̂78 � r̂12 then F � 1, which shows
that the replica is exactly the same as the unknown state
and the teleportation has been perfect. The four unitary
operations are given by the Pauli spin operators for the
singlet-state channel: Û1
i � 1̂, Û2

i � ŝx , Û3
i � ŝy , and

Û4
i � ŝz . For the Werner-state channel, we found that

the same set of unitary operations Ûa
i are applied to maxi-

mize the fidelity [13]. The density matrices of both the
original unknown state and the replica state can be written
in the same form:

r̂ �
1
4

√
I ≠ I 1 �a ? �s ≠ I 1 I ≠ �b ? �s

1
X
nm

cnmsn ≠ sm

!
. (3)

The real vectors �a, �b, and real matrix cnm of the replica
state r̂78 are related to �a0, �b0, and c0

nm of the original state:
�a � �2Fw 1 1� �a0�3, �b � �2Fw 1 1� �b0�3, and cnm �
�2Fw 1 1� �2Fw 1 1�c0

nm�9.
The maximum fidelity F depends on the initial entan-

glement E12 � E� r̂12�:

F � F c 1 F qE2
12 , (4)

where F c � �Ew 1 2�2�9, F q � �2Ew 1 1� �Ew 2

1��9. When the unknown pure state is not entangled, i.e.,
E12 � 0, the fidelity is just F c which is the maximum fi-
delity for double teleportation of two independent particles
[3,19]. For a given channel entanglement, the fidelity F
decreases monotonously as the initial entanglement E12
increases because F q # 0. To obtain the same fidelity,
the larger entangled channels are required for the larger
entangled initial state. It implies that the entanglement is
too fragile to teleport.

The measure of entanglement E78 for the replica state
r̂78 is found using its definition (1) as

E78 � max�0, 1
9 ��2E2

w 1 2Ew 2 4�

1 �1 1 2Ew�2E12	 
 . (5)

In Fig. 2, the entanglement E78 is plotted with re-
spect to the entanglement E12 for the unknown state
and Ew for the quantum channel. We find that E78
is nonzero, showing entanglement in the replica state
only when Ew is larger than a critical value Ec

w �
�3 2

p
2E12 1 1 ���2

p
2E12 1 1 �. If the unknown state

is maximally entangled with E12 � 1, the quantum
channel is required to have the entanglement larger than
Ec

w � 0.3660. It is remarkable that the entanglement
teleportation has the critical value of minimum entan-
glement Ec

w fi 0 for the quantum channel to transfer any
entanglement.

Brukner and Zeilinger [20] recently introduced a new
measure of quantum information which is normalized to
have n bits of information for n qubits. Based on their
derivation, we define a measure of correlation information.
The measure of total information for the density matrix r̂

of the two spin-1�2 particles is I � r̂� �
2
3 �4 Trr̂2 2 1�,

which may be decomposed into three parts. Each particle
4237
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FIG. 2. Measure of entanglement E78 for the replica state r̂78
with respect to the entanglement E12 for the unknown pure state
and Ew for the quantum channel.

has its own information corresponding to its marginal den-
sity matrix, which we call the individual information. The
two particles can also share the correlation information
which depends on how much they are correlated. The mea-
sure of individual information I a� r̂� for the particle a is

I a� r̂� � 2 Tra� r̂a�2 2 1 , (6)

where r̂a � Trbr̂ is the marginal density matrix for par-
ticle a. The measure of individual information I b� r̂� for
particle b can be obtained analogously. If the total density
matrix r̂ is represented by r̂ � r̂a ≠ r̂b , the total system
has no correlation. We define the measure of correlation
information as [21]

I c� r̂� � I � r̂� 2 I � r̂a ≠ r̂b� . (7)

If there is no correlation between the two particles, the
measure of total information is a mere sum of individual
information. On the other hand, the total information is
imposed only on the correlation information, I � I c, if
there is no individual information as for the singlet state.
For a two-body spin-1�2 system, 1 bit is the maximum
degree of each individual information while the correlation
information can have a maximum of 2 bits.

The correlation information is in general contributed by
quantum entanglement and classical correlation. When a
pure entangled state is considered, its entanglement con-
tributes to the whole of the correlation information. For a
mixed state, on the other hand, the correlation information
may also be due to classical correlation. For example, the
Werner state with the entanglement E has the correlation
information I c � a 1 bE 1 gE2 with constants a, b,
and g.

The entanglement teleportation transfers the correlation
information I

c
12 � I c� r̂12� of the unknown state r̂12 to

the replica state r̂78. After straightforward algebra, we find
that the transferred correlation information I

c
78 is given by
4238
I c
78 � k4I c

12, k �
2Ew 1 1

3
, (8)

which shows that the correlation information dissipates
linearly during the teleportation via the noisy quantum
channel. When the channel is entangled, some correla-
tion information, which can be classical or/and quantum
mechanical, remains in the replica state. If the channel is
entangled less than Ec

w , I c
78 is totally determined by classi-

cal correlation. The reason why the teleportation does not
necessarily transfer the entanglement to the replica state
is that the correlation information for the replica state can
be determined not only by quantum entanglement but also
by classical correlation. We analyze it further as we sepa-
rate the full teleportation into two partial teleportations of
entanglement.

Consider a series of two partial teleportations of entan-
glement [22]. After the teleportation of particle 1 of the
state r̂12, particle 2 of r̂72 is teleported and the final replica
state is r̂78 in Fig. 1. We calculate the transfer of correla-
tion information for the two teleportations

I c
72 � k2I c

12, I c
78 � k2I c

72 . (9)

From these linear equations, we can easily recover Eq. (8).
Now we investigate the dependence of correlation informa-
tion on entanglement and classical correlation. For the en-
tangled channel, Ew fi 0, the correlation information I

c
72

can be written in terms of the entanglement E72 for r̂72:

I c
72 � 2k2

µ
4 2 3

E72 1 �1 2 Ew�
Ew�2 1 Ew�

E72

∂

3
E72 1 �1 2 Ew�

Ew�2 1 Ew�
E72 , (10)

which shows that for Ew fi 0 the correlation information of
the state r̂72 is due only to entanglement. The partial tele-
portation r̂12 ! r̂72 transfers at least some of the initial
entanglement as far as the channel is entangled. However,
we have already seen that the final replica state r̂78 may
include some classical correlation. The partial teleporta-
tion r̂72 ! r̂78 may bring about no entanglement transfer.
Why? The only difference between the two procedures is
the purity of their initial states, as r̂12 is pure while r̂72
may be mixed. The purity of r̂72 is determined by the en-
tanglement of the channel Q1.

To analyze the importance of the initial purity for the en-
tanglement transfer in partial teleportation, we release, for
a while, the hereto assumption that both quantum chan-
nels have the same measure of entanglement. The en-
tanglement E78 for the replica state then depends on the
entanglement E46 of the quantum channel Q2, and entan-
glement E72 and purity P72 of the state r̂72. The more Q1
is entangled, the purer r̂72 is. We numerically calculate
the dependence of entanglement E78 on the purity P72 of
the intermediate state r̂72, as shown in Fig. 3. It clearly
shows that the purity of the initial state determines the pos-
sibility of the entanglement transfer. This analysis can be
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FIG. 3. For the partial teleportation r̂72 ! r̂78 with the chan-
nel entanglement E46 � 0.6, the measure of entanglement E78
for the replica state is plotted against the purity P72. The entan-
glement E72 � 0.16 (solid line), 0.18 (dotted line), 0.20 (dashed
line), and 0.21 (long dashed line).

analogously applied to the other sequence of partial tele-
portations r̂12 ! r̂18 and r̂18 ! r̂78.

In conclusion, we investigated the effects of the noisy
environment on the entanglement and information trans-
fer in the entanglement teleportation. The introduction of
the measures of entanglement and correlation information
enables us to analyze intrinsic properties of the entangle-
ment teleportation. We found that the teleportation always
transfers the correlation information which dissipates lin-
early through the impure quantum channel. On the other
hand, the entanglement transfer is not always possible. The
analysis of partial teleportation shows that the purity of an
initial state determines the possibility of the entanglement
transfer. We explained this nontrivial feature by show-
ing that a mixed state can have simultaneously quantum
and classical correlations. Our studies on the entangle-
ment transfer in the noisy environment will contribute to
the entanglement manipulation, one of the basic schemes
in quantum information theory.
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