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We argue that spontaneous microchannel S-matrix correlations and slow spin decoherence result in
a sensitivity of the cross sections for strongly dissipative heavy-ion collisions to an arbitrarily small
perturbation. Such a sensitivity implies that atomic electrons should influence energetic ��100 MeV�
heavy-ion reactions. The atomic-electron effects are predicted to be �100% of the magnitude of the
non-self-averaged oscillating component of the nucleus-nucleus cross sections.
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In the modern quantum theory of highly excited strongly
interacting systems it is commonly assumed (see, e.g.,
Ref. [1]) that the decoherence time, i.e., the time it takes
to lose all the initial phase correlations, is the shortest time
scale of the problem. Application of this idea to the the-
ory of quantum chaotic scattering and complex quantum
collisions proceeding through the formation and decay of
a highly excited intermediate system implies the absence
of a correlation between the reaction amplitudes pertain-
ing to different total spin and exit microchannel quantum
numbers [1–4].

The idea of a rapid decoherence has been successfully
developed and applied in many instances, in particular in
the context of the random matrix theory [1]. Yet one also
does not a priori expect its overall applicability. In par-
ticular, strong spin and microchannel correlations (MC)
have been revealed [5–7] in strongly dissipative heavy-ion
collisions (DHIC). These MC manifest themselves in the
non-self-averaging of excitation function oscillations in
these processes.

In this Letter we argue that the spontaneous MC and
slow spin decoherence [8,9], which can explain [10] the
non-self-averaging of excitation function oscillations, re-
sult in the cross sections for DHIC being sensitive to
an infinitesimally small perturbation. In particular, we
predict that atomic electrons should influence energetic
��100 MeV� heavy-ion reactions. These atomic-electron
effects in DHIC are estimated to be �100% of the mag-
nitude of the non-self-averaged oscillating component of
the nuclear cross sections and therefore should be easily
measured.

There is convincing evidence that the effects of com-
plexity and stochasticity in nuclear systems are shared
by other many-body systems [1]. Therefore the sponta-
neous MC and the extreme sensitivity of the cross sections
should be expected for other complex quantum collisions,
e.g., atomic, molecular, electron-ion, and atomic cluster
collisions.

It follows from our consideration that the precondi-
tion for a sensitivity of the cross sections of DHIC is a
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finite spin decoherence width, i.e., the presence of quantum
chaos and spin decoherence [8–10]. Physically this deco-
herence width determines a new energy scale for quantum
many-body systems. This new scale is analogous to the
Thouless energy in disordered systems. Beyond this scale
the random-matrix theory of quantum many-body systems
ceases to apply [1]. Our analysis gives a value of the de-
coherence width to be about 2–3 orders of magnitude less
than the spreading width [1,11]. This implies that the time
it takes to reach complete mixing within the available phase
space or Hilbert space is 2–3 orders of magnitude longer
than that evaluated from the characteristic values of spread-
ing widths [1,11].

We treat the DHIC in terms of the formation and decay
of a highly excited intermediate nuclear system (INS). The
normalized S-matrix elements are taken to be of the form
S
J
ab�E� � �GD�2p�1�2

P
m gJam gJbm ��E 2 EJm 1 iG�2�

[9,10]. Here, E is the total energy, J is the total spin,
G and D are the total decay width and the average level
spacing, respectively, and EJm are the resonance energies
of the highly excited �D�G ø 1� INS. The a�b � indices
specify intrinsic microstates of the reaction partners in

the entrance (exit) channels, and gJ a�b�
m �

P
j B

J
mj

j
J a�b�
j ,

where gJ a�b�
m are the normalized partial width amplitudes

for transitions between the entrance (exit) channel and
the resonance states, fJ

m, due to the interaction Vn. The

j
J a�b�
j are the corresponding coupling amplitudes between

the entrance (exit) channel and the Slater determinants XJj .

Both gJa�b�
m and j

Ja�b�
j are normalized random Gaussian

variables with a mean value of zero. The quantities BJmj

are the orthogonal matrices arising from the expansion
fJ

m �
P
j B

J
mj
XJj of the eigenstates fJ

m of the INS over

the XJj [9].
Let us consider the regime of slow spin decoherence,

gb # G [7,10], where b is the spin decoherence width
and g is the number of partial waves contributing to
the reaction. Following [10] we use the decomposi-
tion SJab�E� � DS

J,I
a b �E� 1 dS

J,I
a b �E�, where I is the
2000 The American Physical Society 423



VOLUME 84, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 17 JANUARY 2000
average spin and dS
J,I
a b �E� and DS

J,I
a b �E� are given by

Eqs. (12) and (13) in Ref. [10]. The correlation be-
tween SJab�E� and SJa0b0�E� with a fi a0 and/or b fi b0

originates from the correlation between dS
J,I
a b �E� and

dS
J,I

a0b
0�E� [10]. From Eqs. (9), (14), (15), and (16) in

Ref. [10] we obtain dS
J,I
a b �E�dSJ,I

a0b
0�E�� � jdS

J,I
a b �E�j2 �

jdS
J,I

a 0b
0�E�j2 � 2jJ 2 Ijb��G 1 2jJ 2 Ijb�, i.e.,

dS
J,I
a b �E� � dS

J,I

a 0b
0�E� � dSJ,I�E� for all a fi a0 and

b fi b
0. This MC originates from the infinitesi-

mally small �jlj ! 0� entrance-exit correlation

j
Ja
i j

J 0b
j � lKJJ

0

ij �a,b��N1�2 [8,9], where KJJ
0

ij �a, b�
are symmetric matrices whose elements are of the order of
61, and N ! ` is the dimension of the Hilbert space. It
should be noted that the KJJ

0

ij �a, b� matrices with different
�a, b� are different and independent. Yet the dS

J,I
a b �E�

with different �a, b� are identical. Clearly this is possible
only if the limit jlj ! 0 is taken. Indeed then, and only
then, the KJJ

0

ij �a, b� matrices with different �a,b� become
indistinguishable so that we can consider these matrices to
be �a, b� independent: KJJ

0

ij �a,b� � KJJ
0

ij �a0, b0� � KJJ
0

ij .
This is a precondition for obtaining the �a,b� indepen-

dence of the correlation coefficient rJJ
0

mn � gJ am gJ
0b

n . On
the other hand, switching off the correlation between

j
Ja
i and j

J 0b
j does not result in the vanishing of rJJ

0

mn if
the limit jlj ! 0 is taken simultaneously with the limit
N ! ` [8,9].

We observe that the correlation between dS
J,I
a b �E� and

dS
J,I

a0b
0�E� occurs spontaneously. Therefore the detailed

energy dependence of the dSJ,I�E� is set up at random,
reflecting the extreme sensitivity of the cross sections to
an arbitrarily small perturbation.

The sensitivity of the cross sections for DHIC im-
plies that, e.g., atomic electrons should influence the
nucleus-nucleus collision. In particular, we predict that
the cross sections should be different for the same kinetic
energy but for different charges of the ions in the incident
beam. For example, Refs. [6,7] report measurements of
the cross sections for 19F18 1 89Y strongly dissipative
collisions. Let us consider the same collision but with
the charge of the 19F ions being 17. We neglect the
total spin of the system of inner electrons moving in the
nuclear Coulomb field without perturbing the INS. We
also do not distinguish the positions of the c.m. of the
INS and that of the whole system. In zero approximation
the outer electron is moving in the nuclear Coulomb field
screened by the inner electrons and this outer electron
does not perturb the INS. We take the orbital momentum
of the electron to be zero, l � 0, and also neglect the
electron spin and the spins of the colliding nuclei. In
zero approximation, the wave function of the system
is f

J�Jn ,M�0
Jnm,nl�0 � w

me�0
nl�0 fJmn�0

m . Here, w
me�0
nl�0 � wnl�0

(n, l,me are the principal, orbital, and magnetic quantum
424
numbers) is the electron Coulomb wave function, and
fJmn�0

m � fJ
m is the wave function of INS with the spin

Jn � J and its z projection mn � M � 0, where the
z axis is chosen along the direction of incident beam.
A rotationally invariant perturbation introduced due to
the electron-nuclear interaction has the form Vpert �
�Zeff�Z� �e2�R� �

PZ
p�1 R�jR 2 rpj 2 Z� � V �1� 1 V �2�,

where V �1� � �Zeffe2�RZ�
P
p�Rrp��R2,V �2� �

�Zeffe2�2RZ�
P
p�3�Rrp�2�R4 2 r2

p�R2�. Here, R
and rp are the radius vectors of the outer electron
and the protons, Zeff � Z 2 Ne 1 1, Z is the charge
of INS, and Ne is the total number of the electrons.
The strength of the perturbation is determined by the
matrix elements � fJ�Jn ,M�0

Jnm,nl�0 jV �1� 1 V �2�j fJ
0M 0

J 0nm0,n0l0	 �

dJJ 0d0M 0�K �1� 1 K �2��, where fJ
0M 0

J 0nm0,n0l0 are given in terms
of the electron wave function and the nuclear wave
function coupled to total spin J 0 � J with z projection
M 0 � 0. The evaluation of the K �1,2� involves (i) the
straightforward calculation of the electron matrix ele-
ments, and (ii) the calculation of the nuclear many-body
matrix elements for the single-particle operators. These
nuclear matrix elements can be calculated following
the method [12]. We expand fJmn

m over the nuclear
shell-model states. We further expand these shell-model
states into products of single-particle proton states, and
of the shell-model states of the rest of A 2 1 nucleons.
We calculate the single-particle proton matrix elements
using an infinite well approximation. Applying the
random-matrix theory [12] and neglecting the nucleon
spin-orbital interaction we obtain

�K �1��2
 dJ,jJ 0n61jdl0,1�Zeff�n�6�e2�a�2�Rn�a�2DGspr�2p

3 ��EJm 2 EJ
0

m0�2 1 G2
spr�4� .

Here a is the Bohr radius, Rn is the radius of INS,
and Gspr 
 5 10 MeV [11]. The above estimate is
obtained for n 2 n0 � 1, when the electron matrix
elements have maximal values. For the intrinsic exci-
tations 
15 20 MeV of the INS 19F 1 89Y we have
D 
 10210 MeV. Estimating n 
 �3Ne�1�3 we obtain
K �1��D 
 61024. We also calculate K �2�, for which
V �2� couples the nuclear states with jJn 2 J 0nj � 0, 2.
Neglecting the tunneling of the outer electron through
the Coulomb barrier created by the inner electrons we
obtain K �2� 
 �ZeffRn�a�K �1� 
 61027D. Denoting
f
J�Jn ,M�0
Jnm,nl�0 � fJm (which corresponds to the 19F18 1 89Y

DHIC) we have f̃Jm � fJm 1 dfJ�1�
m 1 dfJ�2�

m , where f̃Jm
is the wave function of the system obtained by taking
into account the electron-nucleus interaction. Within
our approximation, this is the wave function of the
intermediate system formed in the 19F17 1 89Y DHIC.
Using the first order of the perturbation theory we obtain
�dfJ�1,2�

m jdfJ�1,2�
m 	 
 �K �1,2��D�2 
 1028, 10214, respec-

tively. In the absence of the electron-nucleus interaction,
gJ a�b�

m � �xJa�b�wnl�0jVnj fJm	 � Vn�xJa�b�j�Vn�Vn�jfJ
m	,

where Vn 
 1 MeV is a characteristic strength of
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the residual nuclear interaction and x
J
a�b� is the en-

trance (exit) channel wave function. In the pres-
ence of the electron-nucleus interaction, g̃J a�b�

m �

�xJa�b�wnl�0jVn 1 V �1� 1 V �2�j f̃Jm	 � gJ a�b�
m 1 dgJa�b�

m 1

DgJ a�b�
m , where

dgJa�b�
m � �xJa�b�wnl�0jVnj �dfJ�1�

m 1 dfJ�2�
m �	

� �xJa�b�jVnjdfJ
m	 ,

dfJ
m � �wnl�0 jdf

J�2�
m 	,

DgJ a�b�
m � �xJa�b�wnl�0jV

�1� 1 V �2�j f̃Jm	


 �xJa�b�wnl�0jV
�2�jwnl�0fJ

m	 
 �Zeff�4

3 �e2�Nea� �Rn�a�2

*
x
J
a�b�

É X
p
r2
p�ZR2

n

É
fJ

m

+
.

Since �dfJ
m jdfJ

m	 
 �K �2��D�2 
 10214, then

dgJa�b�
m 
 1027gJ a�b�

m , while DgJ a�b�
m , 10210gJ a�b�

m ,
where we have taken into account that �

P
p r

2
p�ZR2

n�
is a smoother function of the nucleon coordinates than
the residual interaction �Vn�Vn�. Altogether we have
g̃J a�b�

m � �xJa�b�jVnjf̃
J
m	, where f̃J

m � fJ
m 1 dfJ

m with

�fJ
m j f̃

I
m0	 � dJI�dmm0 1 �1 2 dmm0�O �K �2��D�� and

K �2��D 
 61027. Therefore one does not expect a
detectable difference between the cross sections for
19F17 1 89Y and 19F18 1 89Y DHIC. Yet, because
of the extreme sensitivity of the nucleus-nucleus cross
sections, this difference is predicted to be �100%
of the magnitude of the non-self-averaged oscillating
component of the cross section. In order to support
this prediction we calculate the correlation coefficient,
k � dSJ,I�E�dS̃J,I �E���jdSJ,I�E�j2, where dS

J,I
a b �E� �

�GD�2p�1�2
P

m R
J,I
m ��E 2 EJm 1 iG�2� corresponds to

the 19F18 1 89Y DHIC and dS̃
J,I
a b �E� to the 19F17 1 89Y

DHIC. We rewrite RJIm [see Eq. (8.3) in Ref. [8] ] in the
equivalent form

RJIm � �1�N1�2�
X
k

�uk�N1�2�
X

nfin0

qJImn�k�qJImn0�k�MI ,k
nn0 ,

(1)

where

qJImn�k� � �fJ,k
m jf

I ,k
n 	 ,

f
J�I�,k
m�n� � N1�2

X
i

C
J�I�
m�n�iUikYi ,

C
J�I�
m�n�i � �fJ�I�

m�n� jYi	 �
X
j

B
J�I�
m�n�j�T

21�J�I�
j;i ,

Yi �
X
Jj

TJi;jX
J
j ,

M
I ,k
nn0 � �N1�2�fI

n jZk	� �N1�2�fI
n0 jZk	� ,

Zk �
X
i

UikYi .
In Eq. (1), we have omitted the diagonal sum �
P

n�n0 . . .�
[see Eq. (8.3) in Ref. [8] ] since its contribution to
dSJ,I�E� is negligible provided that G�D ø �b�D�2.
The orthogonal T matrix diagonalizes the symmetric KJJ

0

ij
matrix. This T matrix generates a new set of random

variables h
a�b�
j �

P
Ji T

J
j;ij

J a�b�
i . An orthogonal U matrix

diagonalizes the symmetric A matrix: �UAUT �ij � uidij
with Aij � �hai h

b
j 1 h

a
j h

b
i ��21�2. The expression for

dS̃
J,I
a b �E� is similar to that for dS

J,I
a b �E� but with f̃

J�I�
m�n�

instead of f
J�I�
m�n�. Accordingly, we have to change B ! B̃,

C ! C̃, f
J�I�,k
m�n� ! f̃

J�I�,k
m�n� . However, the K , T , A, U

matrices, j’s and h’s, and the XJi , Yi , Zk basis sets remain
unchanged.

We can show that there is no correlation between the
signs of (i) uk and qJImn�k�, (ii) uk and M

I ,k
nfin0 , (iii) qJImn�k�

and qJImn0�k� with n fi n0 [8,9], (iv) qJImn�k� andM
I ,k
nfin0 , and

(v) qJImn�k� and M̃
I ,k
nfin0 . This yields

RJIm R̃
JI
m̃ � 2

X
nfin0

X
ñfiñ0

qJImn�k�q̃JIm̃ñ�k�
k
qJImn0�k�q̃JIm̃ñ0�k�

k

3 M
I ,k
nn0M̃

I ,k
ññ0

k

,

where �· · ·�
k

� �1�N�
P
k�· · ·� denotes the k ensemble

averaging [8,9]. Considering �N1�2�fI
n jZk	� 
 61 and

�N1�2�f̃I
n jZk	� 
 61 to be Gaussian random variables

and taking into account that Zk is a complete basis set we
obtain

M
I ,k
nn0M̃

I ,k
ññ0

k

� �fI
n j f̃

I
ñ	 �fI

n0 j f̃I
ñ0	 1 �fI

n j f̃
I
ñ0	 �fI

n0 j f̃I
ñ	

� dnñdn0ñ0 1 dnñ0dn0ñ .

In order to evaluate qJImn�k�q̃JIm̃ñ�k�
k

we consider the
relation [8]: �1�N1�2�

P
k q

JI
mn�k� � N1�2�fJ

m jfI
n	 �

N1�2dJIdmn. In the limit N ! `, the qJImn�k� with fixed
J fi I , m, n and running k index constitute an ensemble
of uncorrelated random variables [8]. This means that
the nonvanishing of individual qJImn�k� results from the
nonvanishing of the uncertainty N1�2dJIdmn in the limit
N ! `. Let us ask what is the sign of N1�2dJIdmn?
Since it is the same as the sign of dJIdmn � 0, then
there is no preference in favor of either “1” or “2.”
Therefore, in the limit N ! `, the signs of N1�2�fJ

m jfI
n	

are set up at random. This also implies that the signs of
N1�2�fJ

m jfI
n	 should be sensitive to an extremely small

perturbation, e.g., such as occurs due to the interaction
of the outer electron with INS. Accordingly, we can
write sgn�N1�2�fJ

m jfI
n	� � tJImn sgn�N1�2�f̃J

m j f̃J
n	�,

where jtJImnj � 1 but tJImn has random signs with re-
spect to m, n indices, e.g., tJImn � �21�m1n . Since
�1�N1�2�

P
k q̃

JI
mn�k� � N1�2�f̃J

m j f̃I
n	 � N1�2dJIdmn, we

have q̃JIm̃ñ�k� � tJIm̃ñ sgn�qJIm̃ñ�k�� jq̃JIm̃ñ�k�j. Taking into ac-

count that qJImn�k�qJIm̃ñ�k�
k

� dmm̃dnñ�qJImn�k��2
k

[8] and
425
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�qJImn�k��2
k

� �q̃JImn�k��2
k

we obtain qJImn�k�q̃JIm̃ñ�k�
k

�

dmm̃dnñtJImn�qJImn�k��2
k

if jqJIm̃ñ�k�j � jq̃JIm̃ñ�k�j and

qJImn�k�q̃JIm̃ñ�k�
k

� �2�p�dmm̃dnñtJImn�qJImn�k��2
k

if qJIm̃ñ�k�
and q̃JIm̃ñ�k� are uncorrelated Gaussian variables. This
yields

RJIm R̃
JI
m̃ 
 dmm̃

X
nfin0

tJImnt
JI
mn0 �qJImn�k��2

k
�qJImn0�k��2

k


 dmm̃

X
n

��qJImn�k��2
k
�2 
 dmm̃D�bjJ 2 Ij .

Now the calculation of the correlation coefficient be-
tween dSJ,I�E� and dS̃J,I �E� is straightforward and
we obtain k 
 D�G 1 2jJ 2 Ijb��b2�J 2 I�2 

DG�b2 
 1026 for D � 10210 MeV, G � 0.1 MeV,
and b � 3.5 keV [7,10]. The absence of the correlation
between dSJ,I�E� and dS̃J,I �E� means that the cross
section oscillations for 19F17 1 89Y and 19F18 1 89Y
DHIC are uncorrelated. Therefore the atomic-electron
effects are predicted to be �100% of the magnitude of the
non-self-averaged oscillating component of the nuclear
cross section. For 19F 1 89Y DHIC the relative magnitude
of this oscillating component is �615% [6,7] so that the
atomic-electron effects should be detectable as reliably as
the effect of the non-self-averaging of excitation function
oscillations for DHIC [5–7]. At the same time the
decaying cross section energy autocorrelation functions
[10] are predicted to be insensitive and indistinguishable
for the 19F17 1 89Y and 19F18 1 89Y DHIC. Both the
sensitivity of the cross sections and the decaying energy
autocorrelation functions are manifestations of quantum
chaos [13,14] in strongly dissipative nucleus-nucleus
collisions.

The precondition for a sensitivity of the cross sections of
DHIC is a finite b, i.e., the presence of quantum chaos and
spin decoherence [8–10]. Indeed, in the limit b�G ! 0,
jdSJ,I�E�j2 ~ b�G ! 0 and SJab�E� ! DS

J,I
a b �E� result-

ing in both insensitivity and self-averaging of the cross
sections. The cross sections are also insensitive and
self-averaging in the compound nucleus limit G�b ! 0,
since in this limit the MC vanishes [10], leading to the ran-
domness conditions in the statistical model of compound
nucleus scattering [15,16], theory of quantum chaotic
scattering, and random-matrix theory [1–4,15–19].

In conclusion, we have shown that spontaneous mi-
crochannel S-matrix correlations and slow spin decoher-
ence lead to a sensitivity of the cross sections for DHIC to
an arbitrarily small perturbation in the limit when this per-
turbation vanishes. Such a sensitivity implies that atomic
electrons should influence the cross sections for DHIC.
These atomic-electron effects are predicted to be �100%
of the magnitude of the non-self-averaged oscillating com-
ponent of the nucleus-nucleus cross section. New experi-
426
ments are being proposed to test the predicted possibility
of controlling energetic ��100 MeV� nucleus-nucleus re-
actions by changing the atomic-electron environment.
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