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Band Structure from Random Interactions
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The anharmonic vibrator and rotor regions in nuclei are investigated in the framework of the interacting
boson model using an ensemble of random one- and two-body interactions. We find a predominance of
LP � 01 ground states, as well as strong evidence for the occurrence of both vibrational and rotational
band structures. This remarkable result suggests that such band structures represent a far more general
(robust) property of the collective model space than is generally thought.

PACS numbers: 21.10.Re, 21.60.Ev, 21.60.Fw, 24.60.Lz
A recent analysis of experimental energy systematics of
medium and heavy even-even nuclei suggests a tripartite
classification of nuclear structure into seniority, anhar-
monic vibrator, and rotor regions [1,2]. Plots of the ex-
citation energies of the yrast states with LP � 41 against
LP � 21 show a characteristic slope for each region: 1.00,
2.00, and 3.33, respectively. In each of these three regimes,
the energy systematics is extremely robust. Moreover, the
transitions between different regions occur very rapidly,
typically with the addition or removal of only one or two
pairs of nucleons. The transition between the seniority
region (either semimagic or nearly semimagic nuclei) and
the anharmonic vibrator regime (either vibrational or g soft
nuclei) was addressed in a simple schematic shell model
calculation and attributed to the proton-neutron interaction
[3]. The empirical characteristics of the collective regime
which consists of the anharmonic vibrator and the rotor re-
gions, as well as the transition between them, have been
studied [4,5] in the framework of the interacting boson
model (IBM) [6]. An analysis of phase transitions in the
IBM [7,8] has shown that the collective region is charac-
terized by two basic phases (spherical and deformed) with
a sharp transition region, rather than a gradual softening
which is traditionally associated with the onset of defor-
mation in nuclei [9,10].

In a separate development, the characteristics of low-
energy spectra of many-body even-even nuclear systems
have been studied recently in the context of the nuclear
shell model with random two-body interactions [11,12].
Despite the random nature of the interactions, the low-
lying spectra still show surprisingly regular features, such
as a predominance of LP � 01 ground states separated by
an energy gap from the excited states, and the evidence
of phonon vibrations. The occurrence of these pairing ef-
fects cannot be explained by the time-reversal symmetry
of the random interactions [13]. A subsequent analysis of
the pair transfer amplitudes has shown that pairing is a ro-
bust feature of the general two-body nature of shell model
interactions and the structure of the model space [14]. On
the other hand, no evidence was found for rotational band
structures.
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The existence of robust features in the low-lying spectra
of medium and heavy even-even nuclei [1,2] suggests that
there exists an underlying simplicity of low-energy nuclear
structure never before appreciated. In order to address this
point, we carry out a study of the systematics of collective
levels in the framework of the IBM with random interac-
tions. In an analysis of energies and quadrupole transitions
we show that, despite the random nature (both in size and
sign) of the interaction terms, regular features character-
istic of the anharmonic vibrator and rotor regions emerge.
Our results imply that these features are, to a certain extent,
independent of the specific character of the interaction, and
probably arise from the two-body nature of the Hamilton-
ian and the structure of the collective model space.

In the IBM, collective nuclei are described as a system
of N interacting monopole and quadrupole bosons. We
consider the most general one- and two-body IBM Ham-
iltonian H � H1 1 H2. The one- and two-body matrix
elements are chosen independently using a Gaussian distri-
bution of random numbers with zero mean and variances:

�H2
1,aa0� � y2 �1 1 daa0� ,

�H2
2,bb0� �

1
�N 2 1�2 y2 �1 1 dbb0� .

(1)

Since the matrix elements of H1 and H2 are proportional
to N and N�N 2 1�, respectively, we have introduced a
relative scaling between the one- and two-body interaction
terms of 1��N 2 1�. The coefficient y2 is independent of
the angular momentum and represents an overall energy
scale. The ensemble defined by Eq. (1) is similar, but not
identical, to the two-body random ensemble of [15]. In all
calculations we take N � 16 bosons and 1000 runs. For
each set of randomly generated one- and two-body matrix
elements, we calculate the entire energy spectrum and the
B�E2� values between the yrast states.

Just as in the case of the nuclear shell model [11], we
find a predominance (63.4%) of LP � 01 ground states;
in 13.8% of the cases the ground state has LP � 21, and in
16.7% it has the maximum value of the angular momentum
© 2000 The American Physical Society
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LP � 321. For the cases with a LP � 01 ground state,
we have calculated the probability distribution of the
energy ratio R � �E�41� 2 E�01����E�21� 2 E�01��.
Figure 1 shows a remarkable result: the probability
distribution P�R� has two very pronounced peaks, one at
R � 1.95 and a narrower one at R � 3.35. These values
correspond almost exactly to the harmonic vibrator and
rotor values [see the results for the U(5) and SU(3) limits
in Table I]. No such peak is observed for the g unstable
or deformed oscillator case [SO(6) limit].

Energies by themselves are not sufficient to decide
whether or not there exists band structure. Levels be-
longing to a collective band are connected by strong
electromagnetic transitions. In Fig. 2 we show a cor-
relation plot between the ratio of B�E2� values for the
41 ! 21 and 21 ! 01 transitions and the energy ratio
R. For the B�E2� values we use the quadrupole operator

Q̂m�x� � �syd̃ 1 dys��2�
m 1 x�dyd̃��2�

m , (2)

with x � 2
p

7�2. For completeness, in Table I we show
the results for the three symmetry limits of the IBM [6].
In the large N limit, the ratio of B�E2� values is 2 for the
harmonic oscillator [U(5) limit] and 10�7 both for the de-
formed oscillator [SO(6) limit] and the rotor [SU(3) limit].
There is a strong correlation between the first peak in the
energy ratio and the vibrator value for the ratio of B�E2�
values (the concentration of points in this region corre-
sponds to about 50% of all cases), as well as for the sec-
ond peak and the rotor value (about 25% of all cases). For
the region 2.3 & R & 3.0, one can see a concentration of
points around the value 1.4, which reflects the transition
between the deformed oscillator and the rotor limits (see
Table I). Calculations for different values of the number of
bosons N show the same results.

Despite the randomness of the interactions these re-
sults constitute strong evidence for the occurrence of both
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FIG. 1. Probability distribution P�R� of the energy ratio R �
�E�41� 2 E�01����E�21� 2 E�01�� with

R
P�R� dR � 1 in the

IBM with random one- and two-body interactions.
TABLE I. Energies of B�E2� values in the dynamical symme-
try limits of the IBM [6]. In the U(5) and SO(6) limits we
show the result for the leading order contribution to the rota-
tional spectra.

E�41�2E�01�
E�21�2E�01�

B�E2;41! 21�
B�E2;21! 01�

U(5) 2 2�N21�
N

SO(6) 5
2

10�N21� �N15�
7N�N14�

SU(3) 10
3

10�N21� �2N15�
7N�2N13�

vibrational and rotational band structures. We have re-
peated the calculations for different values of the number
of bosons N and find the same results. Since the results
presented in Figs. 1 and 2 were obtained with random in-
teractions, with no restriction on the sign or size of the one-
and two-body matrix elements, it is of interest to compare
them with a calculation in which the parameters are re-
stricted to the “physically” allowed region. To this end we
consider the consistent Q formulation [16] which uses the
same form for the quadrupole operator, Eq. (2), i.e., with
the same value of x , for the E2 operator and the Hamilton-
ian

H � en̂d 2 kQ̂�x� ? Q̂�x� . (3)

The parameters e and k are restricted to be positive,
whereas x can be either positive or negative 2

p
7�2 #

x #
p

7�2. The properties of the Hamiltonian of Eq. (3)
can be investigated by taking the scaled parameters h �
e��e 1 4k�N 2 1�� and x � 2x�

p
7 randomly on the in-

tervals 0 # h # 1 and 21 # x # 1 (these coefficients
have been used as control parameters in a study of phase
transitions in the IBM [8,9]). In Figs. 3 and 4 we show the
corresponding probability distribution and correlation plot
for the consistent Q formulation of the IBM with realistic
interactions. Although in this case the points are concen-
trated in a smaller region of the plot than before, the results
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FIG. 2. Correlation between ratios of B�E2� values and ener-
gies in the IBM with random one- and two-body interactions.
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FIG. 3. As Fig. 1, but in the consistent Q formulation of
the IBM.

show the same qualitative behavior as for the IBM with
random one- and two-body interactions. In Fig. 4 we have
identified each of the dynamical symmetries of the IBM
(and the transitions between them). There is a large over-
lap between the regions with the highest concentration of
points in Figs. 2 and 4.

In conclusion, we have studied the IBM using random
ensembles of one- and two-body Hamiltonians. It was
found that despite the randomness of the interactions the
ground state has LP � 01 in 63.4% of the cases. For this
subset, the analysis of both energies and quadrupole tran-
sitions shows strong evidence for the occurrence of both
vibrational and rotational band structure. These features
arise from a much wider class of Hamiltonians than are
generally considered to be “realistic.” This suggests that
these band structures arise, at least in part, as a conse-
quence of the one- and two-body nature of the interac-
tions and the structure of the collective model space, and,
hence, represent a far more general and robust property of
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FIG. 4. As Fig. 2, but in the consistent Q formulation of the
IBM.
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collective Hamiltonians than is commonly thought. This
is in qualitative agreement with the empirical observations
of robust features in the low-lying spectra of medium and
heavy even-even nuclei [1,2].

A similar situation has been observed in the context of
the nuclear shell model with respect to the pairing prop-
erties [11,14] which were formerly exclusively attributed
to the particular form of the nucleon-nucleon force. On
the other hand, the random IBM Hamiltonians studied in
this Letter display not only vibrational-like phonon collec-
tivity but, in contrast to the results in [11,14], also imply
the emergence of rotational bands. The IBM is based on
the assumption that low-lying collective excitations in nu-
clei can be described as a system of interacting monopole
and quadrupole bosons, which in turn are associated with
generalized pairs of like nucleons with angular momentum
L � 0 and L � 2. It would be very interesting to establish
whether rotational features can also arise from ensembles
of random interactions in the nuclear shell model, if appro-
priate (minimal) restrictions are imposed on the parameter
space.
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