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We find that the pairing correlations on the usual t-U Hubbard ladder are significantly enhanced by
the addition of a nearest-neighbor exchange interaction J. Likewise, these correlations are also enhanced
for the t-J model when the on-site Coulomb interaction is reduced from infinity. Moreover, the pairing
correlations are larger on a t-U-J ladder than on a t-Jeff ladder in which Jeff has been adjusted so that
the two models have the same spin gap at half filling. This enhancement of the pairing correlations is
associated with an increase in the pair-binding energy and the pair mobility in the t-U-J model and
points to the importance of the charge-transfer nature of the cuprate systems.

PACS numbers: 74.20.–z, 71.10.Fd
Various ab initio quantum chemistry calculations as well
as model Hamiltonian studies have been used to determine
the electronic properties of Cu-oxide clusters [1–6]. In
particular, these calculations have provided parameters for
simpler, effective one-band Hubbard and t-J models which
have then been used to study many-body correlations in
larger systems. However, both the one-band Hubbard and
the t-J models differ in an essential manner from the high
Tc cuprates which are known to be charge-transfer insula-
tors [7] in their undoped state. Thus, the one-band Hubbard
model at half filling is characterized by a Mott-Hubbard
gap which is set by U and in the t-J model, U is taken to
infinity with the constraint of no double occupancy. There-
fore, while Coulomb fluctuations associated with double
occupancy of a site are controlled by U in the Hubbard
model, U also determines the strength of the exchange
coupling. In the Hubbard model as U increases beyond
the bandwidth, J decreases as 4t2�U. Although J is an
independent parameter in the t-J model, U is infinite in
this model, suppressing charge fluctuations.

While we believe that the basic pairing mechanism
arises from the exchange correlations, the charge-transfer
nature of the cuprates can play an essential role in the
doped systems where it allows for a more flexible arrange-
ment between J and U than reflected in either the one-band
Hubbard or t-J models. To explore this, we have carried
out density-matrix renormalization group [8] (DMRG)
calculations of the pairing correlations on two-leg t-U-J
ladders. Ladders are known to provide model systems
which exhibit various phenomena similar to those of the
cuprates [9]. In particular, when doped away from half
filling they are known to have power-law pairing correla-
tions which have opposite, dx22y2 -like, signs between the
rung-rung and rung-leg correlations. These correlations
have previously been investigated for both Hubbard
[10,11] and t-J models [12,13]. Here we study a gener-
alized t-U-J model which includes both an on-site Cou-
lomb repulsion U and a nearest-neighbor exchange J.
While both Hubbard and t-J ladders show pairing corre-
0031-9007�00�84(18)�4188(4)$15.00
lations when doped, we find that these correlations can
be significantly enhanced in a model with both U and J.
We argue that, in fact, a t-U-J model is appropriate for a
charge-transfer material [7].

The basic one-band Hubbard model is characterized by
a one-electron nearest-neighbor hopping t and an on-site
Coulomb interaction U.
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leads to the t-J Hamiltonian
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with J � 4t2�U and d,d0 are vectors separating nearest-
neighbor sites. Here there is an important restriction that
no site can have two fermions. Typically in Eq. (2), t and
J are treated as independent parameters and for doping
near half filling the latter three-site term is dropped. Now,
while these effective models both describe certain aspects
of the cuprate’s system, they lack the flexibility to describe
an important feature that arises from the charge-transfer
nature of these materials. Specifically, in the insulating
state the one-band Hubbard model at large U has a Mott-
Hubbard gap set by U rather than a charge-transfer gap
set by the difference in the oxygen and copper sites’ ener-
gies. Furthermore, for a one-band Hubbard model, when
U is large, J � 4t2�U so that the exchange interaction
becomes negligible for large U. However, when the pla-
nar O is included in a three-band Hubbard model [15]
with a Cu�dx22y2 �-O�ps� hopping tpd, one finds in strong
© 2000 The American Physical Society
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Here Dpd is the Cu-O site energy difference and Ud, Up ,
and Upd are the Cu, O, and Cu-O Coulomb interactions,
respectively. In this case, when Ud becomes large J re-
mains finite, saturating at a value set by the charge-transfer
gap and the O and Cu-O Coulomb interactions. There are
in fact further contributions to Eq. (3) from O-O hopping
terms which Eskes and Jefferson [16] have shown are im-
portant in obtaining a quantitative estimate of the exchange
interaction. In addition, there are in fact various ways to
construct effective single-band Hubbard models which take
into account the Cu-O charge excitations [17–19]. How-
ever, the basic point which we want to make here, illus-
trated by Eq. (3), is that when Ud is large compared to
the effective Cu-Cu hopping, the exchange remains finite
rather than going to zero. Likewise, in the t-J model, while
J�t can be set to a physical value, one has in effect an infi-
nite on-site Coulomb repulsion arising from the restriction
of no double occupancy. The suppression of double oc-
cupancy reduces the mobility of the pairs [20], missing
the physics associated with the partial occupation of the O
sites surrounding a Cu.

Thus it is of interest to consider a generalized t-U-J
model in which there is both a finite Coulomb interaction
U and an effective exchange term J . In the limit in which
J � 0, this is just the one-band Hubbard model while in
the limit U�t ¿ 1, this goes over to the t-J model [21].
Since the doped two-leg ladder exhibits dx22y2 -like pairing
correlations which can be reliably calculated using DMRG
techniques, we have a controlled way of investigating the
interplay of U and J in determining the pairing response.

The DMRG calculations reported here have been carried
out on open ended ladders (up to 2 3 48 sites) keeping up
to 800 states, so that the maximum weight of the discarded
density matrix eigenvalues is 1026. We first examine the
rung-rung pair-field correlation function

D��� � �Di1�D
y
i � (4)

for a doped (eight holes) 2 3 32 ladder. The operator
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creates a singlet pair on the ith rung and Di1� destroys it
on the �i 1 ��th rung. A similar calculation in which a
singlet pair is created on the ith rung and a singlet pair is
destroyed on one of the legs at i 1 � has an opposite sign
indicating the dx22y2 -like structure of the pairing. Because
of the finite length of the ladder, we have kept � # 12,
with the measurements made in the central portion of the
ladder, in the plots of D���. In this region the effects of
the open ends are negligible.
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FIG. 1. The rung-rung singlet pairing correlation function
D��� versus � on a doped 2 3 32 ladder with �n� � 0.875 for
U � 6 and various values of J.

In Fig. 1 we show the effect of adding an additional ex-
change term J to a Hubbard model with U � 6. Here and
in the following we measure energy in units of t. As seen,
the addition of J clearly enhances the pairing. In all of the
plots it is important to recognize that the pair has an inter-
nal structure so that D

y
i and Di1� have only a partial over-

lap to the state in which a pair is added at the ith rung or
removed from the i 1 � rung, and the basic size of D���
is reduced by the square of this overlap. As seen in Fig. 1,
adding an additional exchange strongly enhances the pair-
field correlations.

Similarly, in Fig. 2a we examined the effect of U on
the pairing correlations of a t-U-J ladder with J � 0.25.
For U ¿ 1, we have the usual t-J result. As U initially
decreases, there is again a significant enhancement of the
pairing correlations, but eventually as U decreases below
the bandwidth, the pairing correlations are reduced. This
is also shown in Fig. 2b, where we have plotted

D̄ �
12X

��8

D��� (6)

versus U for J � 0.25. Here D̄ reaches a maximum for
U � 6.

One would, of course, expect that the pairing correla-
tions would depend on the total effective exchange inter-
action, both the explicit “J” exchange and the additional
exchange associated with a finite U. Thus, in the t-U-J
model, as U initially increases, the effective exchange in-
creases and then as U exceeds the bandwidth its contribu-
tion to the exchange decreases as 4t2�U. However, there is
more to this than just the enhancement of the exchange in-
teraction which can be seen by comparing the two models.
A half-filled Hubbard ladder with U � 6 and J � 0.25
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FIG. 2. (a) The rung-rung singlet pairing correlation function
D��� versus � on a doped ladder with �n� � 0.875 for J �
0.25 and various values of U. (b) The partial singlet pairing
correlation function sum D̄ as a function of U for a doped ladder
with �n� � 0.875 and J � 0.25.

has a spin gap Ds � 0.22 corresponding to an effective ex-
change [22] Jeff � 2Ds � 0.44. Using this value for the
exchange in a t-J model we have calculated the pair-field
correlation function D��� in Fig. 3 and compared it with
the pair-field correlations found for the corresponding
t-U-J model. Although both of these models have the
same spin gap at half filling, it is clear that the t-U-J
ladder has significantly stronger pairing correlations.

In order to understand the reasons for this, we have
calculated the pair-binding energy and the pair mobility
for both these models. The pair-binding energy is

Epb � 2E0�1� 2 E0�2� 2 E0�0� (7)

with E0�n� the ground-state energy with n holes. We find
Epb is equal to 0.34 for the t-U-J model with U � 6 and
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FIG. 3. Comparison of D��� versus � for a t-U-J model (full
circles) with U � 6 and J � 0.25 with a t-U model (open
squares) which has the same spin gap at half filling.

J � 0.25. For the t-Jeff ladder with Jeff � 0.44, adjusted so
that the two models have the same spin gap at zero doping,
the pair-binding energy is 0.23. We have also calculated
the effective hopping teff of a hole pair from the depen-
dence of

ep�Lx� � E0�2� 2 E0�0� (8)

on the length of the ladder for ladders with Lx up to 48.
In ladders with open boundary conditions, we expect that
the pair behaves like a particle in a box and hence ep�Lx�
varies as
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FIG. 4. Hole pair energy ep versus �Leff 1 1�22 for the t-U-J
model with U � 6 and J � 0.25 (circles) and the corresponding
t-J model with J � 0.44 (squares). The solid lines are least
mean square fit of Eq. (9).
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FIG. 5. Illustration of a pair transfer process involving a set of
intermediate states. The state in the center has a doubly occupied
site. This transfer process cannot occur in the t-J model but it
does contribute to the pair hopping in the t-U-J model.

ep�Lx� � ep�`� 1 teff
p2

�Leff 1 1�2 , (9)

where the effective length differs from the actual ladder
length Lx because of end effects. For large enough systems,
the difference Leff 2 Lx � dL tends to a constant and is
considered as a fitting parameter [20]. Figure 4 shows the
results for the t-U-J and the t-Jeff models. The effective
hopping, given by the slope divided by p2, is teff � 0.99
for the t-U-J ladder and teff � 0.39 for the t-Jeff ladder.

The enhancement of the effective pair hopping which
occurs when U is finite can be understood as arising from
virtual states involving doubly occupied sites. An example
of this is illustrated in Fig. 5. Here a pair of holes on
the top rung hops to the bottom rung via a set of inter-
mediate states. In this sequence, the second intermediate
state, shown in the middle of the figure, has a doubly oc-
cupied site. In the t-J model this would not be allowed,
leading to a reduction in the effective pair hopping. This
effect not only enhances the pair-field correlations on the
t-U-J ladder, but we believe it also would act to reduce the
stripe stiffness in the 2D t-J problem. This would favor a
dx22y2 -pairing state over the striped state we have typically
found in DMRG calculations on n-leg t-J ladders [23].

Thus we conclude that the charge-transfer nature of
the cuprates can be more appropriately described using a
t-U-J model. Furthermore, this model exhibits enhanced
pairing correlations due to (i) an additional exchange cou-
pling reflecting the exchange path in which there is a vir-
tual double occupancy on the oxygen rather than the Cu
and (ii) an enhanced pair hopping allowed by a finite value
of U which reflects the alternate paths for electron transfer
in the charge-transfer system.
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