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3D computer simulations and experiments are employed to study random packings of compressible
spherical grains under external confining stress. In the rigid ball limit, we find a continuous transi-
tion in which the stress vanishes as (¢ — ¢.)?, where ¢ is the (solid phase) volume density. The
value of ¢. depends on whether the grains interact via only normal forces (giving rise to random close
packings) or by a combination of normal and friction generated transverse forces (producing random
loose packings). In both cases, near the transition, the system’s response is controlled by localized

force chains.
PACS numbers. 81.05.Rm

Dense packings of spherical particles are an important
starting point for the study of simple liquids, metallic
glasses, colloids, biological systems, and granular matter
[1-4]. Inthe case of liquids and glasses, finite temperature
molecular dynamics studies of hard sphere models have
been particularly important. Here one finds a first order
liquid-solid phase transition asthe solid phase volume frac-
tion, ¢, increases. Above the freezing point, a metastable
disordered state can persist until ¢ — ¢rcp [4], where
¢rcp isthe density of random close packing (RCP)—the
densest possible random packing of hard spheres. This
Letter is concerned with the nonlinear elastic properties of
granular packings. Unlike glasses and amorphous solids,
this is a zero temperature system in which the inter-
particle contact forces are nonlinear, purely repulsive, and
path (i.e., history) dependent.

In the conventional continuum approach to this problem,
the granular material istreated as an el asto-plastic medium
[5]. However, this approach has been challenged by recent
authors [6] who argue that granular packings represent a
new kind of fragile matter and that more exotic methods,
e.g., thefixed principal axisansatz, arerequired to describe
their internal stress distributions. These new continuum
methods are complemented by microscopic studies based
on either contact dynamics simulations of rigid spheres or
statistical models, such asthe ¢ model, which does not take
explicit account of the character of the intergrain forces
[7.,8].

In our view, a proper description of the stress state in
granular systems must deal with the fact that the individ-
ua grains are deformable. We report here on a 3D study
of deformable spheres interacting via Hertz-Mindlin con-
tact forces [9]. Our simulations cover four decades in the
applied pressure and allow us to understand the regimesin
which the different theoretical approaches described above
are vaid. Since the grains in our simulations can de-
form, the volume fraction can be increased above the hard
sphere limit and we are able to study the approach to the
RCP and random loose packed (RLP) [3] states from this
realistic perspective. Within this framework, the fragile
rigid grain limit is described as a continuous phase transi-
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tion where the applied stress, o, vanishes continuously as
(¢ — ¢.)P. Here ¢, is the critical volume density, and
B is the corresponding critical exponent.

Of particular importance is the fact that ¢. depends on
the type of interaction between the grains. If they interact
via normal forces only [10], they slide and rotate freely
mimicking the rearrangements of grains during shaking in
experiments [1,2]. We then obtain the RCP value ¢, =
0.634(4) (=¢rcp). By contragt, if the grains interact by
combined normal and friction generated transverse forces,
we get RLP at the critical point with ¢, = 0.6284(2) <
drep. Our resultsindicate that the transitions at both RCP
or RLP are driven by localized force chains. Concomitant
with the approach to the critical volume fraction we find a
change in the probability distribution and in the degree of
spatial correlation of the interparticle forces.

Numerical simulations.—To understand better the
behavior of rea granular materials, we perform granular
dynamics simulations of unconsolidated packings of de-
formable spherical glass beads using the discrete element
method developed by Cundal and Strack [11]. Unlike
previous work on rigid grains, we work with a system of
deformable elastic grains interacting via normal and
tangential Hertz-Mindlin forces plus viscous dissipative
forces [9]. The grains have shear modulus 29 GPa,
Poisson’s ratio 0.2, and radius 0.1 = 0.005 mm.

Our simulations employ periodic boundary conditions
and begin with a gas of 10000 nonoverlapping spheres lo-
cated at random positions in a cube 4 mm on aside. Gen-
erating a mechanically stable packing is not a trivial task
[4]. At the outset, a series of strain-controlled isotropic
compressions and expansions are applied until a volume
fraction dlightly below the critical density is reached. At
this point the system is at zero pressure and zero coordi-
nation number. We then compress along the z direction,
until the system equilibrates at a desired vertical stress o
and a nonzero average coordination number (Z).

Figure 1a shows the behavior of the stress as a function
of the volume fraction. We find that the pressure vanishes
at acritica ¢. = 0.6284(2). Although we cannot rule out
adiscontinuity in the pressure at ¢.—as we could expect
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FIG. 1. (@) Confining stress and (b) average coordination num-
ber as a function of volume fraction for friction and friction-
less balls.

for a system of hard spheres—our results indicate that the
transition is continuous and the behavior of the pressure
can be fitted to a power law form
o~ (¢ — ¢)P, D
where 8 = 1.6(2). Our 3D results contrast with recent
experiments of slowly sheared grains in 2D Couette
geometries [12] where a faster than exponential approach
to ¢. was found, while they agree qualitatively with simi-
lar continuous transitions found in compressed emulsions
and foams [10].
Figure 1b shows the behavior of the mean coordination
number, (Z), as a function of ¢. We find
(Z) = Z. ~ (¢ — ¢.)’, @
where Z. = 4 is a minima coordination number, and
6 = 0.29(5) is a critical exponent. At criticality the sys-
tem is very loose and fragile with a very low coordination
number. The value of Z. can be understood in terms of
constraint arguments as discussed in [13]; in the rigid ball
limit, for a disordered system with both normal and trans-
verse forces, wefind Z, = D + 1 = 4[13]. Aswe com-
press the system more contacts are created, providing more
constraints so that the system becomes overdetermined.
We notice that ¢, obtained for this system is consider-
ably lower than the best estimated value at RCP, ¢rcp =
0.6366(4) obtained by Finney [2] using ball bearings. This
latter value is obtained by carefully vibrating the system
and letting the grains settle into the most compact pack-
ing. Numerically, thisis achieved by alowing the grainsto
reach the state of mechanical equilibrium interacting only
vianormal forces, since frictionless grains can slide freely
and find more compact packings than friction grains. Nu-
merically we confirm this by equilibrating the system at
zero transverse force. The critical packing fraction found
in thisway is ¢. = 0.634(4) (=¢rcp Within error bars).
The stress behaves as in Eq. (1) but with a different ex-
ponent B = 2.0(2) (Fig. 1a). At the critical volume frac-
tion the average coordination number isnow Z. = 6 [and
0 = 0.94(5), Fig. 1b], which again can be understood us-
ing constraint arguments which would give aminimal coor-
dination number Z. = 2D for frictionless rigid balls [13].
We conclude that the value ¢. = 0.6284 < ¢rcp
found with transverse forces corresponds to the RLP limit,

experimentally achieved by pouring balls in a container
but without alowing for further rearrangements [3].
Experimentally, stable loose packings of repulsive hard
spheres with ¢ as low as 0.60 have been found [3]. In
our simulations, ¢. lower than 0.6284 can be obtained by
increasing the strength of the tangential forces. This is
in agreement with experiments of Scott and Kilgour [14]
who found that the maximum packing density of spheres
decreases as the surface roughness (friction) of the balls
increases.

While previous studies characterized RCP'sand RLP's
by using radia distribution functions and Voronoi con-
structions [2], we take a different approach which allows
us to compare our results directly with recent work on
force transmissions in granular matter. Previous studies
of granular media indicate that, for forces greater than the
average value, the distribution of intergrain contact forces
is exponential [7,8]. In addition, photoelastic visuaiza
tion experiments and simulations [7,15] show that contact
forces are strongly localized along “force chains’ which
carry most of the applied stress. The existence of force
chains and exponential force distributions are thought to be
intimately related.

Here we anayze this scenario in the entire range of pres-
sures: fromthe ¢, limit and up. Figure 2a showstheforce
distribution obtained in the simulations with friction balls.
At low stress, the distribution is exponential in agreement
with previous experiments and models. However, when
the system is compressed further, we find a gradual transi-
tion to a Gaussian force distribution. We observe asimilar
transition (not shown here) in our simulations involving
frictionless grains under isotropic compression. This
suggests that our results are generic and do not depend,
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FIG. 2. Distribution of forces for different confining stresses
o obtained (a) in the numerical simulations of friction balls and
(b) in the carbon paper experiments. The straight solid lines are
fittings to exponential forms and the dashed lines are fittings to
Gaussian forms. In both graphs we shift down the distributions
corresponding to the two larger stresses for clarity. (c) Participa-
tion number versus externa stress for the same system asin (a).
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qualitatively, on the preparation history or on the existence
of friction generated transverse forces between the grains.

Physically, we find that the transition from Gaussian to
exponential force distribution is driven by the localization
of force chains as the applied stressis decreased. In granu-
lar materials, with particles of similar size, localization
is induced by the disorder of the packing arrangement.
To quantify the degree of localization, we consider the
participation number IT:

M -1
HE@Z@. ©)
i=1

Here M is the number of contacts between the spheres,
(Z) = 2M /N, and N is the number of spheres. ¢; =
fi/ Z;-”:l fj» where f; is the magnitude of the total force
at every contact. From the definition (3), I = 1 indicates
alimiting state with a spatially homogeneous force distri-
bution (¢; = 1/M, ¥ i). On the other hand, in the limit of
complete localization, IT = 1/M — 0 as M — oo,

Figure 2c shows our results for II versus o. Clearly,
the system is more localized at low stress than at high
stress. Initialy, the growth of 11 is logarithmic, indicating
a smooth delocalization transition. This behavior is seen
upto o = 2.1 MPa, after which the participation number
saturates to a higher value:

[I(o) « log(o) (o < 2.1 MPa),
II(o) = 0.62 (o > 2.1 MPa).

This behavior suggests that, near the critical density, the
forces are localized in force chains sparsely distributed
in space. As the applied stress is increased, the force
chains become more dense and are thus distributed more
homogeneously.

How might we expect the participation number to de-
pend upon other system parameters when the forces are
transmitted principally by force chains? In an idealized
situation, the system has Nr¢ force chains, each of which
has N, spheres. Each spherein aforce chain hastwo major
load bearing contacts, which loads must be approximately
equal. Inthelateral directions, roughly four weak contacts
are required for stability. These contacts carry a fraction
a < 1 of the major vertical load. All other contacts have
fi = 0. Under these assumptions,

~ 2 (1 +2a)* NecN; _ 2+ 2a)? .
(2 (1 + 2a2) N—@m+wy”

The last inequality becomes an equdlity if and only if all
the balls are in force chains. From our simulations at
large pressure a = 2/5, so at (Z) = 8, Il = 0.62, which
implies that the system has been completely homogenized.
Although Eg. (5) is oversimplified, we believe that the
change in dlope in Fig. 2c is emblematic of the complete
disappearance of well-separated chains.

The localization transition can be understood by study-
ing the behavior of the forces during the loading of the
sample. Clearly, visualizing forces in 3D systems is a
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complicated task. In order to exhibit the rigid structure
from the system we visually examine all the forces larger
than the average force; these carry most of the stress of the
system [8,15]. We look for force chains by starting from
a sphere at the top of the system and following the path
of maximum contact force at every grain. We look only
for the paths which percolate, i.e., stress paths spanning
the sample from the top to the bottom. In Fig. 3 we show
the evolution of the force chains thus obtained for two ex-
treme cases of confining stress. We clearly seelocalization
at low confining stress: the force-bearing network is con-
centrated in a few percolating chains. At this point the
grains are weakly deformed but still well connected. We
expect a broad force distribution, as found in this and pre-
vious studies. As we compress further, new contacts are
created and the density of force chains increases. Thisin
turn gives rise to a more homogeneous spatial distribution
of forces, which is consistent with the crossover to a nar-
row Gaussian distribution.

FIG. 3 (color). Example of percolating force chains for the
same system asin Fig. 2a: (a) near ¢. (o0 = 21 kPa); (b) away
from ¢, (o = 100 MPa). The color code is according to the
total force, in N, carried by the chains.
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Experiments.—Some of the predictions of our nu-
merical study can be tested using standard carbon paper
experiments [7], which have been used successfully in the
past to study the force fluctuations in granular packings.
A Plexiglas cylinder, 5 cm diameter and varying height
(from 3 to 5 cm), is filled with spherical glass beads of
diameter 0.8 = 0.05 mm. At the bottom of the container
we place a carbon paper with white glossy paper under-
neath. We close the system with two pistons and we alow
the top piston to slide freely in the vertical direction, while
the bottom piston is held fixed to the cylinder. The system
is compressed in the vertical direction with an Inktron™
press and the beads at the bottom of the cylinder left
marks on the glossy paper. We digitize this pattern and
calculate the “darkness’ [7] of every mark on the paper.
To calibrate the relationship between the marks and the
force, a known weight is placed on top of a single bead;
for the forces of interest in this study (i.e., from =0.05
to 6 N), there is a roughly linear relation between the
darkness of the dot and the force on the bead.

We perform the experiment for different external forces,
ranging from 2000 to 9000 N, and different cylinder
heights. The corresponding vertical stress, o, at the bot-
tom of the cylinder ranges between 100 kPa and 2.3 MPa
(as measured from the darkness of the dots). The results
of four different measurements are shown in Fig. 2b. For
o smaller than =750 kPa, the distribution of forces, f, at
the bottom piston decays exponentialy:

P(f)=(f)"expl—f/(f)], (o <750kPa), (6)

where ( f) is the average force. When the stress is in-
creased above 750 kPa there is a gradual crossover to a
Gaussian force distribution as we find in the simulations.
For example, at 2.3 MPa we have

P(f) = exp[—k*(f — f,)*], [o =23 MPal, (7)

where kf, = 1, and therefore { f) = f,.
have been found in 2D geometries [12].
Conclusion.—In summary, using both numerical
simulations and experiments, we have studied compress-
ible granular media in a range of pressures spanning
amost four decades. In the limit of weak compression,
the stress vanishes continuously as (¢ — ¢.)?, where ¢..
corresponds to RLP or RCP according to the existence or
not of transverse forces between the grains, respectively.
At criticality, the coordination number approaches a
minimal value Z. (equals 4 for friction and equals 6 for
frictionless grains) also asapower law. Our result Z. = 6
agrees with experimental analysis of Bernal packings for
close contacts between spheres fixed by means of wax
[1], and our own analysis of the Finney packings[2] using
the actual sphere center coordinates of 7934 steel balls.
However, no similar experimental study exists for RLP
which could be ableto confirm Z, = 4. A critical slowing
down—the time to equilibrate the system increases near
¢ .—and the emergence of shear rigidity (to be discussed

Similar results

elsewhere) is also found at criticality. The distribution
of forces is found to decay exponentially. The system is
dominated by a fragile network of relatively few force
chains which span the system.

When the stress is increased away from ¢ to the point
that the number of contacts has significantly increased
from itsinitial value Z., we find the distribution of forces
crosses over to a Gaussian and the participation number
increases and then abruptly saturates. The system has be-
come elastic and homogeneous down to a scale compa-
rable to the grain size. Our simulations indicate that the
crossover is associated with a loss of localization and the
ensuing homogenization of the force-bearing stress paths.
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