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Bounded Analytic Bond-Order Potentials for s and p Bonds
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Novel analytic bond-order potentials (BOP’s) are derived for the s and p bonds of sp-valent systems
that are correctly bounded from above by unity. We show that these BOP’s allow the concept of single,
double, triple, and conjugate bonds in carbon systems to be quantified, the average error compared to
accurate tight-binding predictions being only 1% for the s bonds and 15% for the p bonds. Although
molecular dynamics simulations are an order of magnitude slower than with standard Tersoff potentials,
these new BOP’s provide the first “classical” interatomic potentials that handle both structural differen-
tiation and radical formation naturally within its framework.

PACS numbers: 61.50.Lt, 34.20.Cf, 71.15.Fv
The development of interatomic potentials that can han-
dle the making and breaking of covalent bonds is key to
the successful large-scale atomistic simulation of processes
such as the growth of films [1] or tribological degradation
[2]. Until now, the most widely used potentials in this
area have been those of the Tersoff [3]–Brenner [4]-type
in which the energy of the individual bonds comprises a re-
pulsive pairwise contribution and an attractive contribution
given by the product of the bond order and a pairwise bond
integral. The bond order is parametrized in a many-body
form to depend on the local atomic environment through
the nearest-neighbor bond angles and bond distances. De-
spite numerous successful applications of Tersoff-Brenner
potentials [5], they suffer from two serious drawbacks.
First, they do not guarantee correct structural differenti-
ation. For example, they fail to distinguish between differ-
ent competing structures of the S13�510� symmetric tilt
boundary in silicon and diamond, even though ab initio
and tight-binding (TB) calculations find a large 50% vari-
ation in the energies [6]. Second, they do not treat the
p bond correctly, the Tersoff-Brenner potential containing
only a single bond-order term whose angular dependence
reflects that of a s bond [7]. This neglect of a separate p

bond contribution leads to problems with the overbinding
of radicals and a poor treatment of conjugacy [4].

In a recent paper [8] we showed that it was possible to
overcome these deficiencies by deriving explicit analytic
expressions for the s and p bond orders by approxi-
mating an exact many-atom expansion for the bond order
[9,10] within the two-center, orthogonal TB representation
of the electronic structure [11]. Interestingly, the first
term in the many-atom expansion for the s bond is simi-
lar to that written down intuitively by Tersoff [3]. This
term, resulting from a correct description of the second
moment or mean square width of the electronic structure
m2, is unable to differentiate between different three-
dimensional structure types [12]. This requires informa-
tion about the shape of the density of states, not just its
root mean square width b1 � m

1�2
2 . In particular, the

fourth moment m4 reflects the unimodal versus bimodal
0031-9007�00�84(18)�4124(4)$15.00
character of the eigenspectrum through the shape parame-
ter �b2�b1�2 � m4�m

2
2 2 1 [13] and when included in the

analytic bond-order potential (BOP) provides structural
differentiation (see Fig. 2 of Ref. [8]). The sixth moment
m6 (or, equivalently, the third Lanczos recursion coeffi-
cient b3) is required for an exact treatment within the TB
approximation of four-level s-bonded systems such as the
dimer C2 or the tetrahedral methane molecule CH4 [14].
However, since the evaluation of the sixth moment is time
consuming, as it requires the counting of all self-returning
hopping or bonding paths of length six, we suggested
in Ref. [8] to approximate b3 by b1 in order to perform
large-scale atomistic simulations.

Unfortunately, this approximation has been found to
lead to unphysical instabilities during molecular dynam-
ics simulations [15] which can be traced back to the s

bond order becoming larger than unity. This is in direct
violation of the original definition of the bond order Q as
one-half the difference between the number of electrons
in the bonding state compared to the antibonding state, so
that the bond order must always be bounded by unity, i.e.,
Q # 1. In this Letter we will show that we can derive a
bounded analytic expression for the bond order by making
use of the constraint that the poles of the intersite Green’s
function Gij are the same as those of the average on-site
Green’s function 1

2 �Gii 1 Gjj�. This constraint allows us
to find an expression for b3 in terms of b1 and b2 that is
exact for four-level systems and leads to the bond order
being bounded by unity in general.

The bond order Qij may be defined [9] in terms of the
imaginary part of the off-diagonal Green’s function matrix
element Gij�e� through

Qij � 2
2
p

Im
Z eF

Gij�e� de , (1)

where Gij�e� � �ij�e 2 Ĥ�21j j�. Ĥ is the TB Hamilto-
nian operator, eF is the Fermi energy, and e is assumed to
contain a small imaginary part, i.e., e � e 1 ih. Using
BOP theory to four levels in the Lanczos recursion chain
allows the off-diagonal Green’s function to be written [8]
© 2000 The American Physical Society
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Gij�e� �
3X

n�0

G2
0ndan , (2)

where in the absence of four-membered rings [16] da0 �
hs , b2

1da1 � 2h3
s , and

b2
1b2

2da2 � 2b2
2h3

s 2 b4
1hs 1 h5

s 1 Dmi
2Dm

j
2 , (3)

with hs being the s bond integral and Dm
k
2 � �mk

2 2 h2
s�

for k � i, j [17]. G0n�e� are the Green’s func-
tions defined along the Lanczos chain, namely,
�u0j�e 2 Ĥ�21jun�, where the starting Lanczos or-
bital ju0� � �1�

p
2� �ji� 1

p
21j j��. It follows that

G00�e� �
1
2

	Gii�e� 1 Gjj�e�


� e�e2 2 b2
2 2 b2

3��D�e� , (4)

where the denominator results from taking the
usual continued fraction for the diagonal ele-
ment [18] to four levels and is given by D�e� �
e4 2 �b2

1 1 b2
2 1 b2

3�e2 1 b2
1b2

3 . The other Lanc-
zos Green’s functions G0n�e� are defined recursively
and may be written in the form Pn�e��D�e�, where
Pn�e� � b2

1�e2 2 b2
3�, b1b2e, and b1b2b3 for n � 1, 2,

and 3, respectively.
We now impose the constraint [8] that the poles of the

four-term expansion, Eq. (2), for the off-diagonal Green’s
function Gij are the same as those of the four-level con-
tinued fraction, Eq. (4), for the diagonal Green’s function
G00 �

1
2 �Gii 1 Gjj�. This constraint is, of course, exactly

satisfied, in general, if all the nonvanishing terms in the
continued fraction, Eq. (4), and series, Eq. (2), had been
retained. It implies that the numerator of Gij must be fac-
torizable in terms of the denominator D�e�, so that

Gij�e� �
�Ae2 1 C�D�e�

	D�e�
2 �
Ae2 1 C

D�e�
. (5)

Equating powers of e6 and e4 in the numerator of
Eq. (2) with that in the first equation above, we find
that A � da0 and C � �b2

1 2 b2
2 2 b2

3�da0 1 b2
1da1.

Substituting Eq. (5) into Eq. (1), we recover the result
of Eq. (79) of Ref. [8] for the bond order of a half-filled
eigenspectrum, namely,

Q
�4Z�
ij,s �

(
1 1 	b̂2

2 2 �b̂2
1 2 1�
��b̂1 1 b̂3�b̂3p

1 1 b̂2
2��b̂1 1 b̂3�2

)
1

b̂1
, (6)
where b̂n � bn�hs for n � 1, 2, 3. The label 4Z refers to
the approximation of four levels with zero odd moments.

This analytic expression for the bond order is well be-
haved if the exact values of b̂1, b̂2, and b̂3 are evaluated
[14]. However, as we have already mentioned, it can ex-
ceed the upper bound of unity if we approximate b̂3 by
b̂1 in order to provide a usable interatomic potential for
molecular dynamics (MD) simulations. Fortunately, we
now show that this serious flaw can be remedied by using
the constraint of identical poles to determine b3 in terms of
b1 and b2. Equating terms with power e2 in the numerator
of Eq. (2) with those in Eq. (5) we find the new constraint
equation

b2
1b2

2da2 � b2
1�b2

3 2 b2
1�da0 1 �b2

3 2 b2
1 2 b2

2�b2
1da1 .

(7)
It, thus, follows immediately from Eqs. (3) and (7) that

b̂2
3 � 	�b̂2

2 2 b̂2
1 1 1� 1 Dm̂i

2Dm̂
j
2
��b̂2

1 2 1� . (8)

This expression for b̂3 is exact for the symmetric, four-
level dimer and methane systems.

Substituting Eq. (8) into (6) and using the expressions
in Ref. [8] for b̂1 and b̂2 in terms of the self-returning
hopping paths of length two and four which are illustrated
in Fig. 1, we find [19]

QBOP
ij,s

�
1vuut1 1

2F2s 1 d̂2

	1 1
p

�F4s 2 2F
2
2s 1 F

i
2sF

j
2s��F2s


2

,

(9)

where Fns � 1
2 �Fi

ns 1 F
j
ns�. F

i
2s , the two-hop contri-

bution that starts and ends on atom i, can be written

Fi
2s �

X
kfii,j

	gm
s �ujik�
2ĥ2

s�Rik� , (10)

where the Greek symbols m, n, and k refer to the nature
of the atomic species at sites i, j, and k respectively (m,
n, k � H for hydrogen, C for carbon). ĥs�Rik� is the
normalized bond integral h

mk
s �Rik��h

mn
s �Rij�. The angular

functions g
m
s �u� are given by gH

s �u� � 1 and gC
s�u� �

	 ps��1 1 ps�
 � p21
s 1 cosu�, where ps � pps�jsssj.

F
i
4s , the four-hop contribution that starts and ends on atom

i, can be written
Fi
4s �

X
kfii,j

	gm
s �ujik�
2ĥ4

s�Rik� 1
X

k,k0fii,j
kfik0

gm
s �ujik�gm

s �ukik0�gm
s �uk0ij�ĥ2

s�Rik�ĥ2
s�Rik0�

1
X

k,k0fii,j
kfik0

	gm
s �ujik�gk

s�uikk0�
2ĥ2
s�Rik�ĥ2

s�Rkk0� . (11)

d̂ accounts for the non-negligible sp atomic energy level separation on the C sites and is defined by d̂2 �
1
2 	�dm

i �2 1

�dn
i �2
 	4ps��1 1 ps�2
�	hmn

s �Rij�
2 with dH � 0 and dC � �eC
p 2 eC

s � � 6.7 eV [20]. It is clear that Eq. (9) reduces

to the correct results of 1�
p

1 1 d̂2 for the isolated dimer and �1 1
p

3��2
p

2 for methane with eC
p � eC

s � eH
s for the

case ps � 1 [8].
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FIG. 1. Self-returning hopping paths of length 2 [(a)] and
length 4 [(b), (c), (d)] that contribute to the potential func-
tions F

i
2s and F

i
4s , respectively. The atoms included in these

paths are determined by the range of the TB bond integrals
which usually cut off smoothly beyond the nearest neighbor
distance.

Equation (9) is the key result of this Letter. We see that
this analytic expression for the s bond order is automati-
cally bounded by unity as the numerator of the quotient
is non-negative and the denominator is a square. This re-
moves the deficiency of the previous approximation de-
rived by taking b3 � b1. We have labeled expression (9)
by the acronym BOP as it is a true analytic interatomic
potential that is explicitly dependent on local bond angles
and bond distances.

The concept of a constraint equation may also be ap-
plied to our earlier derivation of the p bond order [8].
In this case the matrix form of the Lanczos algorithm
[22,23] must be used in order that the px and py orbitals
are treated on an equal footing at all levels of approxi-
mation. This results in 2 3 2 matrices Bn for the Lanc-
zos recursion coefficients rather than the scalar coefficients
bn that enter the continued fraction in Eq. (2). Taking
the matrix continued fraction to two levels results in a
quartic equation with two uncoupled sets of poles 6b11

and 6b12. Having information only about b̂1, constrain-
ing the poles of Gij to equal these of 1

2 �Gii 1 Gjj� pro-
vides a constrained value for b̂2 �

p
b̂2

1 2 1 within the
three-level approximation. This results in a bond-order
1�

p
b̂2

1 1 b̂2
2 � 1�

p
1 1 2�b̂2

1 2 1�.
The analytic expression for the p bond order then takes

the form

QBOP
ij,p �

1q
1 1 F2p 1 F

1�2
4p

1
1q

1 1 F2p 2 F
1�2
4p

,

(12)

where the two-hop contribution,
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F2p �
1
2

X
kfii,j

� sin2ujik	 ps��1 1 ps�
 	ĥCk
s �Rik�
2

1 �1 1 cos2ujik� 	ĥCC
p �Rik�
2dkC

1 �i $ j�� ,

and the four-hop contribution,

F4p �
1
4

X
k,k0fii,j

� sin2ujik sin2ujik0b̂2
ikb̂2

ik0

1 sin2ujik sin2uijk0b̂2
ikb̂2

ik0

1 �i $ j�� cos2�fk 2 fk0� ,

with

b̂2
ik � 	 ps��1 1 ps�
 	ĥCk

s �Rik�
2 2 	ĥCC
p �Rik�
2dkC .

The capped bond integrals have been normalized by the p

bond integral hCC
p �Rij� and �i $ j� implies an additional

contribution obtained by interchanging i and j in the pre-
ceding terms.

Table I illustrates the accuracy of our analytic expres-
sions for the s and p bond orders by comparing their
predicted values with those of the exact TB results [21]
for the C-C bond in elemental carbon systems and the hy-
drocarbons. Let us consider the s bond order first. The
Tersoff potential [3] is equivalent to retaining only the sec-
ond moment two-hop contribution in Fig. 1 so that from
Eq. (9) the bond order varies as �1 1 d̂2 1 2F2s�21�2.
The predicted angular function, gs�u�, that appears in F2s

in Eq. (10) mirrors very closely the empirical angular func-
tion fitted in the Tersoff potential for C and Si [7,14]. How-
ever, we see that the predicted values of our Tersoff-type
bond order, which are given in parentheses in Table I, pro-
vide an inaccurate measure of the s bond order within
these carbon systems. The value of 0.708 for diamond, for
example, compared to the TB value of 0.912 would lead to
an error in the s bond energy, 2hsQs , of 4.1 eV. These
large errors are not unexpected because it is well known
[13] that the small differences in binding energy between
different non-close-packed structure types are driven by the
fourth moment paths of length 4 in Fig. 1 that determine
the unimodal versus bimodal shape of the electronic eigen-
spectrum rather than the paths of length 2 that determine
the second moment or mean square width of the spectrum.
These four-hop contributions appear in the denominator of
the quotient in Eq. (9) and lead to BOP values that are
in excellent agreement with TB, the average error over all
the systems considered in Table I being 1.2%. The corre-
sponding error for the s bond energy in diamond is now
only 0.06 eV�bond.

The analytic expression (12) for the p bond order, on
the other hand, predicts correctly not only the doubly satu-
rated p bond in C2 and C2H2 but also the singly satu-
rated p bond in C2H4. Moreover, it predicts values for
the conjugate bond orders in graphite and benzene that are
within 16% of the exact TB values of 0.528 and 0.667,
respectively. It does less well for the unsaturated p bond
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TABLE I. C-C bond integrals [14] and bond orders.

Qs

BOP Qp2
Qp1

Qtotal
Local hCC

s �eV� TB BOP BOP BOP
System Coord. hCC

p �eV� (Tersoff) TB TB TB

C2 1 17.84 0.936 1.000 1.000 2.936
2.76 0.936 1.000 1.000 2.936

(0.936)

C2H2 2 19.24 0.974 1.000 1.000 2.974
2.98 0.986 1.000 1.000 2.986

(0.946)

C2H4 3 14.89 0.955 1.000 0.194 2.149
2.30 0.971 1.000 0.137 2.108

(0.888)

C6H6 3 13.50 0.953 0.577 0.141 1.671
2.09 0.963 0.667 0.107 1.737

(0.850)

Cgr 3 12.71 0.951 0.477 0.121 1.520
1.97 0.957 0.528 0.094 1.579

(0.827)

C2H5 3.5 10.87 0.929 0.214 0.145 1.288
1.68 0.949 0.217 0.102 1.268

(0.784)

C2H6 4 10.53 0.917 0.149 0.149 1.214
1.63 0.936 0.105 0.105 1.146

(0.748)

C6H12 4 10.02 0.913 0.141 0.134 1.188
1.55 0.926 0.101 0.101 1.128

(0.725)

C� 4 10.02 0.915 0.126 0.126 1.167
1.55 0.912 0.103 0.103 1.118

(0.708)

contributions where the error in diamond, for example, is
23%. Fortunately, however, because the p bond integral is
much smaller than the s bond integral (hp�hs � 0.155
[20]) this would lead to an error in the diamond p bond
energy, 2hp�Qp2

1 Qp1
�, of only 0.14 eV�bond. The

average error in the total p bond order over all the sys-
tems in Table I is 15% which corresponds to an average
error of 0.6 eV�bond. These errors would be significantly
reduced by refitting the BOPs directly to experiment and
the ab initio data base.

In conclusion, therefore, the analytic BOP expressions
for the s and p bond orders quantify the ubiquitous con-
cept of single, double, triple, and conjugate bonds. More-
over, it is clear from the last column in Table I that they
provide the first “classical” interatomic potential that han-
dles correctly the formation of radicals, C2H5 remaining
essentially a singly bonded system on the abstraction of
a H atom from C2H6. Current MD simulations using an-
alytic BOP forces are an order of magnitude slower than
with Tersoff potentials [15,24]. However, this is a small
price to pay for having an interatomic potential that is suf-
ficiently sophisticated to handle both structural differenti-
ation and radical formation within its framework.
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