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Shell Correction Energy for Bubble Nuclei
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The positioning of a bubble inside a many fermion system does not affect the volume, surface, or
curvature terms in the liquid drop expansion of the total energy. Besides possible Coulomb effects, the
only other contribution to the ground state energy of such a system arises from shell effects. We show
that the potential energy surface is a rather shallow function of the displacement of the bubble from
the center and in most cases the preferential position of a bubble is off-center. Systems with bubbles
are expected to have bands of extremely low lying collective states, corresponding to various bubble
displacements.

PACS numbers: 21.10.Dr, 21.10.Pc, 21.10.Re, 21.60.Cs
There are a number of situations when the formation of
voids is favored. When a system of particles has a net
charge, the Coulomb energy can be significantly lowered
if a void is created [1,2] and despite an increase in surface
energy the total energy decreases. One can thus naturally
expect that the appearance of bubbles will be favored in
relatively heavy nuclei. This situation has been consid-
ered many times over the last 50 years in nuclear physics
and lately similar ideas have been put forward for highly
charged alkali metal clusters [3].

The formation of gas bubbles is another suggested
mechanism which could lead to void(s) formation [4].
The filling of a bubble with gas prevents it from collaps-
ing. Various heterogeneous atomic clusters [5] and halo
nuclei [6] can be thought of as some kind of bubbles
as well. In these cases, the fermions reside in a rather
unusual mean field, with a very deep well near the center
of the system and a very shallow and extended one at
its periphery. Since the amplitude of the wave function
in the semiclassical limit is proportional to the inverse
square root of the local momentum, the single-particle
(sp) wave functions for the weakly bound states will have
a small amplitude over the deep well. If the two wells
have greatly different depths, the deep well will act almost
like a hard wall (in most situations).

Several aspects of the physics of bubbles in Fermi sys-
tems have not been considered so far in the literature. It
is tacitly assumed that a bubble position has to be deter-
mined according to symmetry considerations. For a Bose
system one can easily show that a bubble has to be off-
center [7]. In the case of a Fermi system the most favor-
able arrangement is not obvious [8]. The total energy of a
many fermion system has the general form

E�N� � eyN 1 esN
2�3 1 ecN1�3 1 Esc�N� , (1)

where the first three terms represent the smooth liquid drop
part of the total energy and Esc is the pure quantum shell
correction contribution, the amplitude of which grows in
0031-9007�00�84(3)�412(4)$15.00
magnitude approximately as ~ N1�6; see Ref. [9]. We con-
sider in this work only one type of fermions with no electric
charge. In a nuclear system the Coulomb energy depends
rather strongly on the actual position of the bubble, but in
a very simple way. In an alkali metal cluster, as the excess
charge is always localized on the surface, the Coulomb en-
ergy is essentially independent of the bubble position. The
character of the shell corrections is in general strongly cor-
related with the existence of regular and/or chaotic motion
[10,11]. If a spherical bubble appears in a spherical sys-
tem and if the bubble is positioned at the center, then for
certain “magic” fermion numbers the shell correction en-
ergy Esc�N�, and hence the total energy E�N�, has a very
deep minimum. However, if the number of particles is not
magic, in order to become more stable the system will in
general tend to deform. Real deformations lead to an in-
creased surface area and liquid drop energy. On the other
hand, merely shifting a bubble off-center deforms neither
the bubble nor the external surface and, therefore, the liq-
uid drop part of the total energy of the system remains
unchanged.

Moving the bubble off-center can often lead to a greater
stability of the system due to shell correction energy
effects. In recent years it was shown that in a 2-dimen-
sional annular billiard, which is the 2-dimensional analog
of spherical bubble nuclei, the motion becomes more
chaotic as the bubble is moved further from the center
[12]. One might thus expect that the importance of the
shell corrections diminishes when the bubble is off-center.
We show that this is not the case however.

One can anticipate that the relative role of various pe-
riodic orbits (diameter, triangle, square, etc.) is modified
in unusual ways in systems with bubbles. In 3D systems
the triangle and square orbits determine the main shell
structure and produce the beautiful supershell phenome-
non [10,13]. A small bubble near the center will affect
only diameter orbits. After being displaced sufficiently
far from the center, the bubble will first touch and destroy
some triangle orbits. In a 3D system only a relatively small
© 2000 The American Physical Society
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fraction of these orbits will be destroyed. Thus one might
expect that the existence of supershells will not be criti-
cally affected but that the supershell minimum will be less
pronounced. A larger bubble will simultaneously affect
triangular and square orbits and thus can have a dramatic
impact on both shell and supershell structure.

The change of the total energy of a many fermion system
can be computed quite accurately using the shell correc-
tions method, once the sp spectrum is known as a function
of the shape of the system [9,11]. The results presented
in this Letter have been obtained using the 3D version of
the conformal mapping method described in [8] as applied
to an infinite square well potential with Dirichlet bound-
ary conditions. The magic numbers are hardly affected by
the presence or absence of a small diffuseness [14]. The
absence of a spin-orbit interaction leads to quantitative but
to no qualitative differences.

In Fig. 1 we show the unfolded sp spectrum for the case
of a bubble of half the radius of the system, a � R�2, as
a function of the displacement d�R of the bubble from the
center. The size of the system is determined as usual from
R3 2 a3 � r3

0 N . The unfolded sp spectrum is determined
using the Weyl formula [15] for the average cumulative
number of states.

´n � NW �en� , (2)

where en are the actual sp energies of the Schrödinger
equation, NW �e� is the Weyl formula for the total number
of states with energy smaller than e in a 3D cavity, and ´n

are the unfolded eigenvalues, which by construction leads
to a spectrum with a unit average level density. As the
bubble is moved off-center, the classical problem becomes
more chaotic [12] and one can expect that the sp spec-
trum would approach that of a random Hamiltonian [16]

FIG. 1. A portion of the full unfolded sp spectrum (with unit
average level density) for the case of a bubble of radius a � R�2
(R � R0N1�3) as a function of the bubble displacement d�R.
Energy levels with m � 0 (single-degenerate) are marked with
pentagrams.
and that the nearest-neighbor splitting distribution would
be given by the Wigner surmise [17]. A random Hamilto-
nian would imply that magic particle numbers are as a rule
absent. There is a large number of avoided level crossings
in Fig. 1 and one can clearly see a significant number of
relatively large gaps in the spectrum. Note that levels with
different symmetries (different angular momentum projec-
tion on the symmetry axis m) can cross. Even for extreme
displacements large gaps in the sp spectrum occur signifi-
cantly more frequently than in the case of a random (which
is closer to a uniform) spectrum. A simple estimate, us-
ing the Wigner surmise, shows that gaps of the order of
three units or larger should be absent in the portion of the
spectrum shown in Fig. 1. The probability to encounter a
nearest-neighbor energy spacing s greater than s0 is given
by P�s . s0� � exp�2ps2

0�4�. For s0 � 3, 4, 5 one thus
obtains 8.5 3 1024, 3.5 3 1026, and 3 3 1029, respec-
tively. Several very large gaps for d�R � 0.45 are unam-
biguously present. Higher in the spectrum even larger gaps
could be found. These features are definitely not charac-
teristic of a random Hamiltonian. If the particle number is
such that the Fermi level is at a relatively large gap, then the
system at the corresponding “deformation” is very stable.
A simple inspection of Fig. 1 suggests that for various par-
ticle numbers the energetically most favorable configura-
tion can have the bubble either on- or off-center. This
situation is very similar to the celebrated Jahn-Teller ef-
fect in molecules. Consequently, a magic particle number
could correspond to a “deformed” system. In this respect
this situation is a bit surprising, but not unique. It is well
known that many nuclei prefer to be deformed, and there
are particularly stable deformed magic nuclei or clusters
[11,13,14,18].

There is a striking formal analogy between the energy
shell correction formula and the recipe for extracting the
renormalized vacuum Casimir energy in quantum field the-
ory [19] or the critical Casimir energy in a binary liquid
mixture near the critical demixing point [20]. Note that
even though Casimir energy is typically a smooth function
of distance, it cannot be ascribed to the “smooth liquid
drop” energy. Similarly, no part of the Esc energy of a
bubble near the surface can be ascribed to the smooth liq-
uid drop energy. In Fig. 2 we show the contour plot of the
Esc energy for a system with a � R�2 as a function of the
bubble displacement d�R versus N1�3. The overall regu-
larity of “mountain ridges” and “canyons” seem to be due
to the interference effects arising from two periodic orbits
along the diameter passing through the centers of the two
spheres. Various mountain tops and valleys form an alter-
nating network almost orthogonal to the mountain ridges
and canyons. For some N’s the bubble “prefers” to be in
the center, while for other values that is the highest energy
configuration.

As a function of the particle number N and at fixed d�R,
the oscillation amplitude of the shell correction energy is
maximal for on-center configurations. For a given particle
413
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FIG. 2 (color). Contour plot of the shell correction energy for
the case of a bubble of radius a � R�2 for up to N � 8000
spinless fermions. Energy is measured in units of h̄2�2mr2

0 .

number N the energy is an oscillating function of the dis-
placement d and many configurations at different d values
have similar energies. However, in all cases, moving the
bubble all the way to the edge of the system leads to the
lowest values of Esc�N�. This drop in the shell correc-
tion energy as a function of d is preceded by the highest
“mountain range.” A practitioner of the Strutinsky method
might be tempted to ascribe these features to the smooth
part of the total energy. One should remember, however,
that the Strutinsky recipe requires a smearing energy g,
which is supposed to be chosen larger than the typical en-
ergy separation between two consecutive energy shells. In
a semiclassical language, such a difference is determined
by the shortest periodic orbit in the system. In the present
case the length of the shortest orbit 2�R 2 d 2 a� ! 0,
when the bubble approaches the edge of the system. This
would require an even longer smearing interval g in or-
der to perform the Strutinsky procedure. In the absence
of analytical results for this system a comparison with a
simpler situation is extremely illuminating. When the in-
ner and outer surfaces are very close one can ignore in the
first approximation their curvatures and consider instead
the case of matter between two infinite parallel planes. It
414
can be shown explicitly that the shell correction energy is
inversely proportional to the separation between the two
surfaces [21], a behavior which is similar to that seen in
Fig. 2. For a small bubble one can easily agree that it is
more cost effective to make a hole closer to the edge, where
the sp wave functions are smaller. Once again, we note
here the analogy with the Casimir energy [19,20]. More-
over, at least qualitatively, this shortest orbit and the one
diametrically opposed to it suffice to explain the pattern
of “valleys” and “ridges” in Figs. 2 and 3. It is not en-
tirely clear to us whether this final drop in the total energy
could occur in a self-sustaining system. When the bubble
is close to the outer surface, matter density in the region
of the closest approach decreases, which in turn leads to
a decrease of the self-consistent potential. In this case the
square well potential model used by us becomes then in-
adequate. Physical systems where such configurations can
nevertheless be realized are briefly mentioned at the end.
In the case of a bubble with a smaller radius a � R�5
the number of level crossings is significantly smaller than
in Fig. 1. As a result, the shell correction energy contour
plot has less structure, see Fig. 3, and thus a system with
a smaller bubble is also significantly softer.

Pairing correlations can lead to a further softening of
the potential energy surface of a system with one or more

FIG. 3 (color). The same as in Fig. 2 but for a � R�5 and for
up to N � 1000 spinless fermions.
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bubbles. We have seen that the energy of a system with
a single bubble is an oscillating function of the bubble
displacement. When the energy of the system as a func-
tion of this displacement has a minimum, the Fermi level
is in a relatively large gap, where the sp level density
is very low. When the energy has a maximum, just the
opposite takes place. Pairing correlations will be signifi-
cant when the Fermi level occurs in a region of high sp
level density and it is thus natural to expect that the to-
tal energy is lowered by pairing correlations at “mountain
tops,” and be less affected at “deep valleys.” All this ul-
timately leads to a further leveling of the potential energy
surface. With increasing temperature the shell correction
energy decreases in magnitude, but the most probable po-
sition of a bubble is still off-center. The reason in this
case is, however, of a different nature, the “positional”
entropy of such a system favors configurations with the
bubble off-center, as a simple calculation shows, namely,
Spos�d� � 2 lnd 1 const, where d is the position vector of
the center of the bubble with respect to the center of the
sphere. Moreover, making more bubbles could lead to a
further decrease of the free energy, even though the total
energy might increase.

A system with one or several bubbles should be a very
soft system. The energy to move a bubble is parametrically
much smaller than any other collective mode. All other
familiar nuclear collective modes, for example, involve at
least some degree of surface deformation. For this reason,
once a system with bubbles is formed, it could serve as an
extremely sensitive “measuring device,” because a weak
external field can then easily perturb the positioning of the
bubble(s) and produce a system with a completely different
geometry. There are quite a number of systems where one
can expect that the formation of bubbles is possible [8].
Known nuclei are certainly too small and it is difficult
at this time to envision a way to create nuclei as big as
those predicted in Ref. [2]. On the other hand, voids,
not always spherical though, can be easily conceived to
exist in neutron stars [22]. Metallic clusters with bubbles,
one or more fullerenes in a liquid metal, or a metallic
ball placed inside a superconducting microwave resonator
[23] in order to study the ball energetics and maybe even
dynamics are all very promising candidates.
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