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We present new types of solitary wave solutions for the higher order nonlinear Schrodinger (HNLS)
equation describing propagation of femtosecond light pulses in an optical fiber under certain parametric
conditions. Unlike the reported solitary wave solutions of the HNL'S equation, the novel ones can describe
bright and dark solitary wave properties in the same expressions and their amplitude may approach

nonzero when the time variable approaches infinity.

In addition, such solutions cannot exist in the

nonlinear Schrédinger equation. Furthermore, we investigate the stability of these solitary waves under
some initial pertubations by employing the numerical simulation methods.

PACS numbers: 42.81.Dp, 05.45.Yv, 42.65.Tg, 42.79.5z

Propagations of ultrashort light pulses in optical fibers
are of particular interest because of their extensive
applications to telecommunication and ultrafast signal-
routing systems. The recent progress of research on
al-optical soliton transmission systems has reveaded
that they can overcome the limitations on the speed
and distance of linear wave transmission systems [1].
In such a system, the higher order effects such as the
third order dispersion (TOD), the self-steepening, and
the self-frequency shift become important if the pulses
are shorter than 100 fs [2]. When compared with the
group velocity dispersion (GVD), the TOD is normally
negligible but produces significant effects of asymmetrical
tempora broadening for the ultrashort pulses [3,4]. The
self-steepening effect, which is accompanied by an optical
shock at trailing edge, also leads to the asymmetrical
spectral broadening of the pulses [5]. The self-frequency
shift due to stimulated Raman scattering results in an
increasing redshift in the pulse spectrum, in which the
long wavelength components experience Raman gain at
the expense of the short wavelength components [6,7].

For large channel handling capacity and for high speed it
is necessary to transmit solitary waves at a high bit rate of
ultrashort pulses. So it is very important that all higher
order effects be considered in the propagation of fem-
tosecond pulses. In contrast, GVD and self-phase modula-
tion (SPM) produce symmetric broadening in the time and
frequency domains, respectively, and counterbalance to
propagate solitons under some conditions, i.e., bright and
dark soliton solutions exist in anomalous and normal dis-
persion regions, respectively. Similarly, there can be some
possihilities to have soliton propagation with al higher or-
der effects which induce asymmetrical broadening.

Taking account of these higher order effects mentioned
above, Kodama et al. [8,9] derived the higher order non-
linear Schrodinger (HNLS) equation, which describes the
propagation of ultrashort light pulses in optical fibers. In
recent years many authors have analyzed the HNL S equa-
tion from different points of view (e.g., Painlevé analy-
sis, Hirota direct method, Ablowitz-Kaup-Newell-Segur
(AKNS) method, inverse scattering transform, Darboux-
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Béacklund transform, and conservation laws) and obtained
some types of exact solutions such as optical shock and
bright N soliton for special values of the parameters
[10-13]. Particularly, there have recently been some
articles giving bright and dark solitary wave solutions
for arbitrary values of parameters in the HNLS equation
[14—17]. However, for al bright soliton or solitary wave
solutions mentioned above, they are solved under the zero
boundary conditions.

In this Letter, we present three new types of solitary
wave solutions for the HNLS equation describing propa-
gation of femtosecond light pulsesin an optical fiber under
certain parametric conditions. Aswe will show, unlike the
reported solitary wave solutions of the HNL S equation, the
novel ones can describe both bright and dark solitary wave
properties in the same expressions and their amplitudes
do not approach zero when the time variable approaches
infinity. Furthermore, we investigate the stability of these
solitary waves under someinitial perturbations by employ-
ing numerical simulation methods.

The governing envelope wave equation for ultrashort
light pulse propagation takes the form [8,9]

E, = i(aEy + 012|E|2E) + azEy + CV4(|E|2E)t
+ asE(EI), . (1)

where E isthe slowly varying envelope of the electric field,
the subscripts z and ¢ are the spatial and temporal partial
derivatives in retard time coordinates, and a1, as, a3, aa,
and a5 aretherea parametersrelated to GVD, SPM, TOD,
self-steepening, and self-frequency shift arising from
stimulated Raman scattering (SRS), respectively.

For picosecond light pulses, the last three terms of
Eg. (1) can be omitted, and Eq. (1) can reduce to the non-
linear Schrédinger (NLS) equation. The NLS equation in-
cludes only the GVD and the SPM well known in the fiber,
and it admits bright and dark soliton-type pulse propa
gation in anomalous and normal dispersion regimes, re-
spectively [18]. However, for femtosecond light pulses,
whose duration is shorter than 100 fs, the last three terms
are non-negligible and should be retained.
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Although Eg. (1) can be reduced to a two-parameter
canonical form by employing scaling transformation and
the analyzing processes can be simplified as in Ref. [14],
in the following analysis we still keep it in the original
formulation to label the physical effect of each term in
Eqg. (2).

Now we proceed with the analysis of Eq. (1) by sepa
rating E(z, r) into the complex envelope function A(z, 1)
and linear phase shift ¢(z,t) = kz — (1t according to
E(z,t) = A(z,t)explid(z,t)]. Substituting the expres-
sion into Eq. (1) and removing the exponential term, we
can rewrite EqQ. (1) as

A, + im A, + @Ay — ia3zAy + aslAPA — iaglAPA,
— iasA’A} — agA = 0, (2

wherea; = —2a,Q + 30302, a, = a1 — 3a3Q, a3 =
ary — as), as = 2a4 + as, as = ay + as, and ag =
Kk + a;Q? — a3Q3.

Here, unlike the general assumption given in Ref. [17],
we keep the envelope function A(z, ¢) in a complex form
S0 as to contain a possible nonlinear phase shift (see the
following analysis).

In the following we look for the solitary wave solutions
whose asymptotic values are nonzero when the time vari-
able approaches infinity (|z|] — o) and make the ansatz

A(z,t) ={ip + Atanh[n(r — xz)]

+ ipsechin(t — x2)1}, ©)

where  and y are the pulse width and shift of inverse
group velocity, respectively. The amplitude of A(z, 1) is

|A(z, )] = {(A* + B?) + 2Bp sech[n(t — xz)]
+ (p? — A sech[n(r — x2) B2 (4)

and its corresponding nonlinear phase shift ¢ (z, r) isinthe
form

_ B + psechn(t — XZ)]>
¢(z,1) arctan( PR r— . (5
When 8 = A = 0 or p = 0, the ansatz (3) can reduce to
abright or dark solitary wave form, respectively. However,
for general cases, the ansatz can describe the features of
both bright and dark solitary waves.

Substituting Eq. (3) into Eg. (2) and setting the coeffi-
cients for the independent terms containing independent
combinations of hyperbolic functions equal to zero, one
obtains nine independent equations. The resulting equa-
tions are

M6asn® = (as + as)(p> = A)] =0,  (6)
pl6asn® — (as + as)(p* — A)] =0, (7)
pl—2a;n* + as(p> = 1*) = 2a4BAn] =0, (8)

AN=2a2m% + as(p® — A?)]
— 2Bnlasp® + as(p®> — A)]1 =0, (9)

M=xm + aim — dazn® — aym(A* + B2)

—asn(A* — B2 — 2p7)] + a38(3p* — A*) =0,
(10)

plxm — aim + azn’® — 2ABaz + (a4 — as)A’n
+ (a4 + as)B*n] =0, (12)

plaxn® + a3(A* + 3B%) + 2asBAn — ag] = 0, (12)
Mas(A* + B?) — ag] = 0, (13)

Blas(A* + B%) — ag] = 0, (14)

Obviougly, for the case of B = A =0 or p = 0, these
nine eguations can reduce to four or five equations, and one
can obtain the corresponding bright or dark solitary wave
solutions, respectively, as given by Refs. [14-17]. Fur-
thermore, for the case of a3 = a4 = as = 0, the HNLS
equation can reduce to the NL S equation. From these nine
parametric equations we can see that they are not com-
patible. This means that it is impossible that such a solu-
tion (3) should exist for the NLS equation. For the HNLS
equation, Egs. (6)—(14) are compatible if we impose some
restrictions on the parameters. We have found that there
are three types of solitary wave solutions for Eq. (2) under
the following parametric conditions.

(I) 3ara3 = ajay and ay + 2as = 0.—In this
case, the solution (3) can be written in the form

A(z,t) = {Atanh[n(r — xz)] + ip sech[n(t — x2)I},
(15)

and its intensity is given by

JAI> = {A%* + (p* — AD)sech’[n(r — x2)},  (16)

where
(64

=30t = X, (17)

as
x = —(@1Q + asA?) — azn? (18)
Q= ag/a4, (19)

2
o= —2 N9 (20)
3 ay

From Eqg. (17) we can see that the solution (15) describ-
ing a bright or dark solitary wave depends on the spe-
cific nonlinear and dispersive features of medium intensity,
and the pulse width is related to the difference of maxi-
mum and minimum intensity, i.e., [p> — A?|. Concretely
speaking, if azas > 0 (<0), from Eqg. (17) one must re-
quire p> — A2 > 0 (<0), and the solution (15) represents
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a brightlike (darklike) solitary wave. For the brightlike
case, different from the reported solitary wave solutions
of the HNLS equation, the present one has a pronounced
“platform” underneath it under nonzero boundary condi-
tions and its asymptotic value approaches A as the time
variable approaches infinity (|t| — <°).

When A — 0 or p — 0, the solution (15) becomes a
specific bright or dark solitary wave solution under zero
boundary conditions, respectively.

(i) a3 = 0and a4y + a5 = 0.—In this case, the so-
Iution (3) can be written as

Alz,t) = {iB + Atanh[n(t — x2)]
+idsech[n(t — x2)I}, (21)
and its intensity is given by

Al = B> + A* + 2Brsechn(t — x2)]. (22

where
n=-=2p8], (23)
23]
A =2a1(asQ — a)/aj, (24)

k= (an — asQ)(A> + ,82) - a; 02, (25)

x = —Qa1Q + asB?). (26)

From Eq. (21) one must choose the parameter of frequency
shift ) to satisfy a1 (as{) — ay) > 0 athough Q isaun-
determined parameter. Asin thefirst case, the pulse width
is also related to the difference of maximum and minimum
intensity, i.e., |2B8A|. However, unlike the first case, the
solution (21) describing a brightlike or a darklike solitary
wave does not depend on the specific features of medium
intensity and is only dependent on the initial pulses, that
is, if BA > 0 (<0), the solution (21) represents a bright-
like (darklike) solitary wave. This feature indicates that a
bright and dark solitary wave pulse may combine together
under certain conditions and propagate simultaneously in
an optical fiber with acombined form. Therefore, we sug-
gest that a shorter and more descriptive name for this case
is a combined solitary wave.

(i) a; = a3 = 3a4 + 2as5 = 0.—In this case, the
solution (3) can be written as

A(z,t) = {ip + Atanh[n(r — x2)]
+ ipsech[n(t — x2)]}, (27)
and its intensity is given by
JAI> = (A% + B%) + 2Bp sech[n(t — x2)]
+ (p* — A sech’[n(t — x2)]. (28)

where
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(e — ayQ)B
m= (a4 + 0(5)/\ ’ (29)
pr=A* + 2B, (30)
k= (2 — asQ)(A* + B, (31)
x =0. (32

For the special case of A = 0, from Egs. (6)—(14), one can
further reduce the envelope function of the electric field
E(z,1) to

E(z,1) = (B + psechni) exp[—i(az/as)t],  (33)

where the parameters 8, p, and n are determined by the
incident pulses. As shown in Fig. 1, if setting Bp <0
and |p| > | B/, theintensity of the solitary wave |E(z, 1)|?
is of a peculiar feature in that it takes the shape of W.
Therefore, we suggest that a shorter and more descriptive
name for this case is a W-shaped solitary wave.

These solitary wave solutions might be one of the pos-
sible explanations for a single solitonlike pulse shape with
a pronounced platform underneath it as commented by
Bullough attached to Ref. [19]. Aspreviously pointed out,
the properties of femtosecond pulses can be described by
the HNL S equation and thereis no solitonlike solution with
a platform underneath it for the NLS equation. Therefore,
the origin of this platform might come from the higher
order nonlinear effects.

In order to analyze the stability of these solitary wave
solutions we have made numerical evolutions for initia
optical pulses under some perturbations (i.e., amplitude,
random noises, and the slight violation of the parame-
ter conditions). It is shown that these solitary waves are
still stable after propagating a distance of twenty disper-
sion lengths. Detailed stability analyses are now under
investigation.

0.8
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0.4+

0.0+
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FIG. 1. Intensity of W-shaped solitary waves. The intensity
is given by |E(z,7)|> = {8 + p sech[n(r — yz)]}*. Curves 1,
2, and 3 are plotted a z = 0 by setting 8 =1, n = 1, and

p=—(1+ %, —(1 + +/2), and 2, respectively.
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In conclusion, we have obtained new types of solitary
wave solutions for the HNL S equation describing propaga-
tion of femtosecond light pulsesin an optical fiber under
certain parametric conditions. Unlike the reported soli-
tary wave solutions of the HNLS equation, the novel ones
can describe the properties of both bright and dark solitary
waves in the same expressions and their amplitudes do not
approach zero when the time variable approaches infinity.
So these new types of solitary waves might be called com-
bined solitary waves. These combined solitary waves may
be decomposed into bright and dark ones, and this might
be a potential application in communication systems and
in the femtosecond laser systems which can produce bright
and dark solitonlike pulses simultaneously. The humerical
simulation shows that these new types of solitary waves
are till stable under the perturbations of such things as
amplitude, random noises, and the slight violation of pa-
rameter conditions after propagating a distance of twenty
dispersion lengths.
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