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The distribution of tunneling rates in the presence of classical chaos is derived. We use classical infor-
mation about tunneling trajectories plus random matrix theory arguments about wave function overlaps.
The distribution depends on the stability of a specific tunneling orbit and is not universal, though it does
reduce to the universal Porter-Thomas form when the orbit is very unstable. For some situations there
may be systematic deviations due to scarring of real periodic orbits. The theory is tested in a model
problem and possible experimental realizations are discussed.
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Tunneling is crucial in describing many physical phe-
nomena, from chemical and nuclear reactions to conduc-
tances in mesoscopic devices and ionization rates in atomic
systems. When such systems are complex, it is natural
to model tunneling effects using random matrix theory
(RMT) [1]. We show here that when the underlying sys-
tem is one of clean chaotic dynamics, successful statistical
modeling requires explicit incorporation of nonuniversal,
but simple, dynamical information. We derive a distri-
bution for the tunneling rate which depends on a single
parameter, calculated from the stability properties of the
dominant tunneling orbit.

The signatures of chaos in tunneling have recently re-
ceived much attention [2–8], two important regimes hav-
ing been considered. The first is that the quantum state
is initially localized in a region where the dynamics is
largely nonchaotic and one wants to understand the tun-
neling rate through chaotic regions of phase space [2–6].
The second, and the one we focus on, is that virtually
all of the energetically accessible phase space is chaotic
[7,8] so that the quantum state is initially localized in
a chaotic region of phase space. These two situations
are different in many important ways. In particular, the
statistical distribution of the tunneling rates in the first
regime has power law decays [3] whereas we show that
the distribution in the second regime has exponential de-
cay. The result is a generalization of the Porter-Thomas
distribution [9] used to model neutron and proton reso-
nances [9–11] and conductance peak heights in quantum
dots [12,13].

It is shown in Ref. [7] that the average tunneling rate
is determined by a complex orbit we call the instanton.
To characterize fluctuations about this average we define a
rescaled tunneling rate as follows. In the case of metastable
wells the absolute tunneling rate of a given state labeled by
n is measured by the resonance width, or inverse lifetime
Gn. The corresponding normalized tunneling rate is de-
fined to be
0031-9007�00�84(18)�4084(4)$15.00
yn � Gn�G , (1)

where G�E, h̄� � �Gn� is a local average computed for a
given set of physical parameters. G�E, h̄� is a smooth,
monotonic function of its arguments and is given by an
explicit formula in terms of the (purely imaginary) action
and stability of the instanton [7]. A similar definition holds
for splittings in double wells and in either case � yn� � 1
by construction.

Fluctuations in yn are calculated using a tunneling
operator T which is constructed from the semiclassical
Green’s function and can be interpreted as transporting
the wave function across the barrier. Specifically,

yn ~ �njT jn� , (2)

where jn� is the wave function represented in a Hilbert
space which quantizes a surface of section. This matrix
element is interpreted physically as measuring the size of
the wave function in a small region (in which the ker-
nel of T is not small) surrounding a unique real orbit.
This orbit connects to the instanton and is referred to as
its real extension. Details can be found in [8], but in
this Letter it will be enough to know the spectrum of
T . For a two-dimensional system this is approximately
�lkjlj1�2, k � 0, 1, . . .�, where l is the inverse of the sta-
bility of the instanton orbit, which is always less than unity
in magnitude and can easily be found using real dynamics
in the inverted potential. (The discussion is readily gen-
eralized to a higher dimension but we refrain from doing
so for clarity.) To derive distributions for yn we make sta-
tistical assumptions about the state jn�, but not about the
operator T .

We express T in its own eigenbasis
P

k lkjlj1�2jk� �kj
and find

yn � a
X̀
k�0

lkj�k jn�2 � a
X̀
k�0

lkjxkj
2, (3)

where we denote xk � �k jn� and the prefactor a � 1 2

l ensures that � y� � 1. The states jn� are normalized so
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that on average jxkj
2 is unity. We now assume that the

xk’s can be treated as Gaussian random variables, as is
appropriate for classically chaotic dynamics.

We simplify the derivation by assuming Gaussian
orthogonal ensemble (GOE) statistics, i.e., that the xk are
statistically independent and given by the joint distribution
P�x�dx �

Q
k�exp�2x2

k�2��
p

2p	 dxk where x � �xk�,
so that

P� y; l� �
Z

dx P�x� d

µ
y 2 a

X̀
k�0

lkx2
k

∂
. (4)

We use d�z� �
R

dt exp�itz��2p and observe that each
xk involves a simple Gaussian integral. The final result
[and generalizing to the Gaussian unitary ensemble (GUE)
case] is

P� y; l� �
1

2p

Z `

2`
dt eity

Ỳ
k�0

µ
1 1

2i
b

alkt

∂2b�2

, (5)

where b � 1 and 2 for GOE and GUE, respectively. The
product converges rapidly if l is not too close to unity so
(5) can easily be used to calculate P� y; l� in practice. We
remark that in Ref. [14] the authors derive a distribution
which can be understood to be a special case of (5) in the
case that the resonance energy is close (in a classical sense)
to that of the potential saddle through which the tunneling
is taking place. They applied their results to the data of
[15] on the D2CO molecule.

An extensive formalism exists for the application of
random matrix theory to scattering from chaotic systems
(see [16] for a review and [17] for developments relevant
to scattering resonances, and references therein). Tunnel-
ing problems necessarily involve weak coupling to the
continuum, and it is then better to compare our results
to those of [18]. If we interpret each state jk� of T as
labeling a distinct and statistically independent channel,
then Eq. (5) corresponds to a situation with an infinite
number of distinctly weighted channels [19]; the average
partial width of each is proportional to lk . This expo-
nential decrease of the coupling to the higher channels
means that effectively only a finite number of channels
are active. It is the power of the present method to as-
cribe the weight of each channel uniquely in terms of
classical dynamics (specifically the instanton stability) so
that there are no free parameters.

Recall that � y� � 1; the second moment is

� y2� � 1 1
2
b

1 2 l

1 1 l
. (6)

The channel interpretation helps in understanding this dis-
tribution as we vary l. For small l, only the k � 0 channel
is significant and the distribution is of the Porter-Thomas
form: exp�2y�2��

p
2py and exp�2y� for b � 1 and

2, respectively. This can be understood from (5) by a
branch-point/residue analysis around the singularity at t �
ib�2a. This distribution is commonly used to model
point tunneling contacts [12,18]. It is often very accu-
rate but its validity is not universal, as we discuss. For l

close to unity, many channels contribute significantly, the
fluctuations around the mean are reduced, and the distri-
bution approaches a Gaussian with variance s2 
 a�b

(approaching a delta function for small a).
For l . 0 and y # 0 we close the contour of (5) in the

lower half plane; since the integrand has no singularities
there, the result is simply zero. This is consistent with the
fact that T is a positive definite operator so that Eq. (3)
does not admit negative y. Similarly, any derivative of
p� y� is also zero for y # 0, implying that p� y� goes to
zero faster than any power of y for y small and positive.
In the limit y ¿ l we expand around the first singularity
to obtain

P� y; l�GOE 

exp�2y�2a�p

2pay
,

P� y; l�GUE 

exp�2y�a�

a
.

(7)

This falls off exponentially with y and not with a power
law as observed in the chaos-assisted regime [3].

In metastable wells or in double wells whose symmetry
is reflection through an axis, l is always positive. In
double wells whose symmetry is inversion through a point,
however, l is negative and T is nondefinite [8]. In that
case negative splittings (for which the odd member of a
doublet has a lower energy than the even member) can
arise. Equations (3), (5), and (6) remain valid in this case
and produce a distribution which allows negative as well as
positive values of y. It decays exponentially for j yj ¿ l

as in Eq. (7) but with different exponents for y . 0 and
y , 0. Note in particular that the distribution allows for
zero splittings (which we might induce for a particular
doublet by tuning a system parameter). This means that
we can construct states which remain localized in either
well for all time, as in the one-dimensional time-dependent
system considered in [20].

Since it is a simpler numerical task to calculate many
splittings in a double well than to calculate many resonance
widths in a metastable well, we use the former to test our
predictions and note that any conclusions apply identically
to the latter. Consider the potential

V �x, y� � �x2 2 1�4 1 x2y2 1 my2 1 ny 1 sx2y .
(8)

There is a reflection symmetry in x and if the energy is
less than 1 2 n2�4m the motion is classically confined
either to x , 0 or to x . 0. It is convenient to work
at fixed energy in order to keep l constant and we do
this by quantizing q � 1�h̄ [8], that is, by finding those
values of h̄ which are consistent with a specified choice of
parameters and energy. This is effectively what happens,
for example, in scaling problems such as a hydrogen atom
in a magnetic and an electric field [21]. In the physically
more common case of energy spectra, the shape of the
4085
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distribution would change with energy (since l does) and
we should either superimpose distributions or restrict the
ensemble to a classically small energy window.

In Fig. 1 we show histograms constructed from the q
spectra for two choices of parameters such that the classical
dynamics is almost fully chaotic. We also show the distri-
bution (5) with b � 1 and using the corresponding values
of l. Clearly, the numerically computed histograms are
well captured by the theoretical distribution. We show, for
comparison, the Porter-Thomas distribution which clearly
fails to model the numerical data correctly. We remark
that this sort of agreement was observed for most parame-
ter values as long as the dynamics was fully chaotic.

In Fig. 2 we show an exception to the general agree-
ment, for which the histogram is intermediate between
the distribution (5) and the Porter-Thomas form. We at-
tribute this to the effects of scarring [22,23], as follows.
The instanton has real turning points where the momentum
vanishes and the position is real. At these points we can
integrate in imaginary time, in which case the instanton
retraces itself, or in real time, in which case we get a real
trajectory. We refer to this real trajectory as the real exten-
sion of the instanton.

There is no reason why the real extension should itself
be periodic. Typically it is not. However, the parame-
ters of Fig. 2 have been tuned so that the real extension
is in fact periodic. We find in this case that the over-
laps xk � �k jn� are no longer distributed according to the
Gaussian P�xk� � exp�2x2

k�2��
p

2p as assumed in our
derivation—there are relatively more large overlaps and
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FIG. 1. Results for two typical potentials, with � m, n, s� �
�0.15, 0.17, 0.00� above and �0.25, 0.50, 0.00� below. In both
cases the energy is lower than saddle maximum by an amount
0.1. The continuous curves are the theoretical distributions cal-
culated using the appropriate values of l (shown). The dashed
curves show the Porter-Thomas distribution for comparison. The
insets show the corresponding instanton orbits and their real
extensions.
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more small overlaps. This effect can be explained using
a recent theory of scarring [23] which describes how the
overlaps between a wave packet placed on a periodic or-
bit and the chaotic eigenstates deviate from random ma-
trix theory. In our problem the eigenvectors jk� behave
like wave packets of this type when the real extension is
periodic. The effect of this deviation from random ma-
trix theory is to give more large splittings and more small
splittings than (5) predicts and, therefore, to push the dis-
tribution in the direction of the Porter-Thomas form. We
remark that for n � s � 0, the real extension is always a
periodic orbit [7] and we see anomalous statistics for that
situation as well.

In the final case we discuss, the term ny 1 sx2y in (8)
is replaced by txy. Now the potential is symmetric under
�x, y� ! �2x, 2y� rather than under �x, y� ! �2x, y�. In
this case l , 0 [8] and negative splittings can occur. Re-
sults are shown in Fig. 3. Again, the theoretical distribu-
tion agrees with the histogram.

Our results are relevant to situations in which particles
tunnel out of or between chaotic regions separated by
an energetic barrier. Applications include hydrogen atoms
in parallel electric and magnetic fields where the com-
petition between the imposed fields and the Coulomb
force causes chaotic motion while the presence of the
electric field causes tunneling [21]. Dissociative decays
of excited nuclei and molecules may also fall into this
regime and a possible application is to the D2CO molecule
[15] whose dissociation widths have a distribution which
is very different from the x2 distribution which one would
have from a theory with a finite number of equivalently
weighted channels.

Another application is to conductances of quantum dots.
In the Coulomb blockade regime electrons must tunnel
into and out of dots which are thought to be chaotic.
Such experiments have been done [13] leading to results
which are consistent with the Porter-Thomas distribution
for the tunneling widths. We contend that the reason is
that the instanton path in all cases is very unstable, lead-
ing to a small value of l. For energies near the saddle
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FIG. 2. As in Fig. 1 but for parameter values � m, n, s� �
�0.25, 0.40, 0.254� for which the real extension of the instanton
orbit is periodic and the resulting distribution is significantly
different from the RMT prediction.
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FIG. 3. Results for the inversion-symmetric potential with
� m, t� � �0.1, 1.0� which possesses nonpositive splittings.

l 
 exp�22pvy�vx� [24], where vx and vy are the cur-
vatures of the potential saddle along and transverse to the
instanton, respectively. This is often small, but by making
the saddle flat in the transverse direction or sharp in the in-
stanton direction, it is possible to have l be of order unity.
It is an interesting issue whether this can be arranged for
the quantum dots. One feature which helps in this regard
is that we predict a distribution which vanishes for small y,
whereas the Porter-Thomas distribution diverges as 1�

p
y.

This difference could be discernible even for rather small
values of l.

Another possibility for nonuniversal statistics would be
a situation analogous to Fig. 2, where the tunneling route is
directly connected to a real periodic orbit. This geometry
could be engineered into quantum dots and is present in
the hydrogen atom problem [21]. In this case we predict
deviation from random matrix theory results. This would
be similar in spirit to the work of Narimanov et al. [25]
who look for dynamical effects in conductance peaks of
quantum dots.
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