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Enhancement of Stochastic Resonance in Distributed Systems due to a Selective Coupling
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Recent massive numerical simulations have shown that the response of a “stochastic resonator”
is enhanced as a consequence of spatial coupling. Similar results have been analytically obtained
in a reaction-diffusion model, using nonequilibrium potential techniques. We now consider a field-
dependent diffusivity and show that the selectivity of the coupling is more efficient for achieving
stochastic-resonance enhancement than its overall value in the constant-diffusivity case.
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The phenomenon of stochastic resonance (SR)—
namely, the enhancement of the output signal-to-noise
ratio (SNR) caused by injection of an optimal amount of
noise into a periodically driven nonlinear system—stands
as one of the most puzzling and promising cooperative
effects arising from the interplay between deterministic
and random dynamics in a nonlinear system. The broad
range of phenomena—indeed drawn from almost every
field in scientific endeavor—for which this mechanism
can offer an explanation has been put in evidence by many
reviews and conference proceedings, Ref. [1] being the
most recent and comprehensive one, from which one can
scan the state of the art.

Most phenomena that could possibly be explained by
SR occur in extended systems: for example, diverse ex-
periments are being carried out to explore the role of SR
in sensory and other biological functions [2] or in chemical
systems [3]. Notwithstanding this fact, the overwhelming
majority of the studies made up to now are based on zero-
dimensional systems, while most of the features of this
phenomenon that are peculiar to the case of extended sys-
tems—or stochastically resonating media (SRM)—still
remain largely to be explored. Particularly interesting nu-
merical simulations on arrays of coupled nonlinear oscil-
lators have been recently reported [4], indicating that the
coupling between these stochastic resonators enhances the
response of the array, which exhibits moreover a higher
degree of synchronization. This effect has its counterpart
in the continuum, as a study on the overdamped continu-
ous limit of a f4 field theory shows [5]. Recently—by
exploiting the previous knowledge of the nonequilibrium
potential (NEP) [6] for a bistable reaction-diffusion (RD)
model [7]—one of us has shown analytically that the SNR
increases with diffusivity in the range explored [8].

While considering a constant diffusion coefficient D
is a standard approach, it is not the most general one:
it is reasonable to expect that the reported enhancement
in the SNR by the effect of diffusion could depend in a
more detailed way on D. In this regard, see, for instance,
Ref. [9]. In this Letter we consider the more realistic case
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of a field-dependent diffusion coefficient D���f�x, t����, and
show that it causes an enhancement of the SNR still larger
than the one associated with a homogeneous increase of its
amplitude.

The model under study—a one-dimensional, one-
component RD model describing a system that undergoes
an electrothermal instability [7]—can be regarded as the
continuous limit of the coupled system studied by Lindner
et al. [4]. The field f�x, t� might describe the (time-
dependent) temperature profile in the “hot-spot model”
of superconducting microbridges [7]. This model can be
also regarded as a piecewise-linear version of the space-
dependent Schlögl model for an autocatalytic chemical
reaction, and that for the “ballast resistor,” describing
the so-called “barretter effect” [10]. As a matter of fact,
since in the ballast resistor the thermal conductivity is a
function of the energy density, the resulting equation for
the temperature field includes a temperature-dependent
diffusion coefficient in a natural way [10]. Pointers to
other contexts in which a description containing a field-
dependent diffusivity becomes inescapable have been
included in Refs. [11,12].

By adequate rescaling of the field, space-time variables,
and parameters, we get a dimensionless time-evolution
equation for the field f�x, t�,

≠tf�x, t� � ≠x���D�f�≠xf��� 1 f�f� , (1)

where f�f� � 2f 1 u�f 2 fc�, u�x� is Heaviside’s
step function. All the effects of the parameters that keep
the system away from equilibrium (such as the electric
current in the electrothermal devices or some external re-
actant concentration in chemical models) are included in
fc. Moreover, since the value of the field f�x, t� corre-
sponds in these models to the deviations with respect to,
e.g., a reference temperature TB . 0 (the temperature of
the bath) in the ballast resistor or to a reference concentra-
tion r0 in the Schlögl model, it is clear that—up to a given
strict limit (i.e., f � 2TB for the ballast resistor)—some
negative values of f�x, t� are allowed.
© 2000 The American Physical Society
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As was done for the reaction term [7,8], a simple choice
that retains, however, the qualitative features of the system
is to consider the following dependence of the diffusion
term on the field variable:

D�f� � D0�1 1 hu�f 2 fc�� . (2)

For simplicity, here we choose the same threshold fc for
the reaction term and the diffusion coefficient. The more
general situation is left for a forthcoming paper [13].

We assume the system to be limited to a bounded
domain x [ �2L, L� with Dirichlet boundary conditions
at both ends, i.e., f�6L, t� � 0. The piecewise-linear
approximation of the reaction term in Eq. (1)—which
mimicks a cubic polynomial—was chosen in order to find
analytical expressions for its stationary spatially symmet-
ric solutions. In addition to the trivial solution f0�x� � 0
(which is linearly stable and exists for the whole range of
parameters) we find another linearly stable nonhomoge-
neous structure fs�x�—presenting an excited central zone
[where fs�x� . fc] for 2xc # x # xc —and a similar
unstable structure fu�x�, which exhibits a smaller excited
central zone. The form of these patterns is analogous
to what has been obtained in previous related works [7],
as shown in Fig. 1. The difference is that in the present
case df�dxjxc is discontinuous and the area of the central
zone depends on h.

The indicated patterns are extrema of the NEP,
which—among other properties that we shall be using
presently— is a Lyapunov functional for the deterministic
system introduced thus far. In fact, the unstable pattern
fu�x� is a saddle point of this functional, separating the
attractors f0�x� and fs�x� [7]. The notion of a NEP
has been thoroughly studied, mainly by Graham and his
collaborators [6]. Loosely speaking, it is an extension to
nonequilibrium situations of the familiar notion of (equi-

FIG. 1. fs� y� is the stable pattern, and fu� y� is the unstable
one (similar in form but exhibiting a smaller excited central
zone); they are extrema of the NEP: fu� y� is a saddle point of
this functional, separating the attractors f0� y� and fs� y� [7].
Here we indicate f0� y� and fs� y� with a solid line, fu� y� with
a dotted line, while the value of fc is shown with a dashed line.
librium) thermodynamic potential. For the case of a field-
dependent diffusion coefficient D���f�x, t���� as described
by Eq. (1), it reads [7,10]
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Given that ≠tf � 2�1�D�f��dF �df, one finds �F �
2

R
�dF �df�2 dx # 0, thus warranting the Lyapunov-

functional property. This NEP functional offers the
possibility of studying not just the linear but also the
nonlinear— in the case at hand, the global—stability of
the patterns, following its changes as the parameters of
the model are varied [7].

For a given threshold value f�
c , both wells correspond-

ing in a representation of the NEP to the linearly stable
states have the same depth (i.e., both states are equally
stable). Figure 2 shows the dependence of F �f� on the
parameter fc. As in previous cases, we analyze only the
neighborhood of fc � f�

c [8,14]. Here we also consider
the neighborhood of h � 0, where the main trends of the
effect can be captured.

Now, with the aim of studying SR, we introduce a
weak signal that modulates the potential F around the
situation in which the two wells have the same depth.
This is accomplished by allowing the parameter fc to
oscillate around f�

c : fc�t� � f�
c 1 dfc cos�Vt 1 w�,

with dfc ø fc�t�. We also introduce in Eq. (1) a fluc-
tuating term j�x, t�, which we model (as is customary)
as an additive Gaussian white-noise source with zero
mean value and a correlation function �j�x, t�j�x0, t0�� �
2gd�t 2 t0�d�x 2 x0�, thus yielding a stochastic partial
differential equation for the random field f�x, t�. The
parameter g denotes the noise strength [15].

FIG. 2. Dependence on fc of the value of F calculated for
the patterns in Fig. 1. The stable branch Fs (indicated with a
solid line) and the unstable one Fu (indicated with a dotted line)
collapse at a critical value of fc. At a certain value fc � f�

c
(indicated by an arrow), the value of Fs becomes positive and
fs�x� becomes metastable.
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As in previous works [7], we exploit a generalization
to extended systems of the Kramers-like result for the
evaluation of the decay time or “mean-first-passage time”
�t� [16,17]. Here, those results are extended to the case
of field-dependent diffusivity, yielding [13]

�t� � t0 exp

Ω
W �f, fi�

2g

æ
. (4)

The functional W �f, fi� (fi indicates the initial meta-
stable state, which at each instant may be either f0 or fs),
that is the solution of a Hamilton–Jacobi-like equation, has
the following expression:
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with U�f� �
Rf

0 df0 f�f0�. The prefactor t0 in Eq. (4)
is essentially determined by the curvature of the NEP
F �f, fc� at its extrema.

The calculation of the SNR proceeds, for the spatially
extended problem, through the evaluation of the space-time
correlation function �f� y, t�f� y0, t0��. To do that we use
a simplified point of view, based on the two-state approach
[18], which allows us to apply some known results almost
directly. To proceed with the calculation of the correlation
function, we need to evaluate the transition probabilities
W6 ~ �t�21, which appear in the associated master equa-
tion. For small dfc,

W �f, fi� � W �f, fi�f�
c

1 dfc

µ
≠W �f, fi�

≠fc

∂
f�

c

3 cos�Vt 1 w� .

By solving such a master equation up to first order in
dfc, it is possible to evaluate the correlation function. Its
double Fourier transform, the generalized susceptibility
S�k, v�, factorizes in this approach, and the relevant term
becomes a function of v only (the corresponding expres-
sions are omitted, see [14] for details).

It is worth noting that many of the results exposed here
(e.g., the profiles of the stationary patterns and the cor-
responding values of the NEP) are exact. The only ap-
proximations involved in the calculation of the SNR are
the standard ones, namely, the Kramers-like expression
in Eq. (4) and the two-level approximation used for the
evaluation of the correlation function [18].

Using the definition from Ref. [18] for the SNR at
the excitation frequency (here indicated by R), the final
result is

R 	
µ

L

t0g

∂2

exp�2W �f, fi�f�
c
�g� , (6)

where L � �dW �f, fi��dfc�f�
c
dfc, and t0 is given

by the asymptotically dominant linear stability eigenval-
406
ues: t0 � 2p�jlunjlst�21�2 (lun is the unstable eigen-
value around fu, and lst is the average of the smallest
eigenvalues around f0 and fs). Equation (6) is analogous
to the results in zero-dimensional systems, but here L, t0,
and W �f, fi�f�

c
contain all the information regarding the

spatially extended character of the system.
In Fig. 3 we depict the dependence of R on the noise

intensity g, for several (positive) values of h. These curves
show the typical maximum that has become the fingerprint
of the stochastic resonance phenomenon. Figure 4 is a
plot of the value Rmax of these maxima as a function of
h. The dramatic increase of Rmax, of several dB for a
small positive variation of h, is apparent and shows the
strong effect that the selective coupling (or field-dependent
diffusivity) has on the response of the system.

It must be noted that the only two approximations made
in order to render Eq. (6)—namely, the Kramers-like ex-
pression in Eq. (4) and the two-level approximation used
for the evaluation of the correlation function [18]—break
down for large positive values of h because, for increas-
ing selectivity, the curves of F �f� vs fc in Fig. 2 shift
towards the left, while the barrier separating the attractors
at f�

c tends to zero. This effect is basically the same as the
one discussed in Ref. [8] in connection with the increase
of the global diffusivity D0, and also it is the physical rea-
son why arbitrarily large enhancements of the SNR can-
not be achieved by simply increasing D0 or h. It is also
worth noting that, besides the two aforementioned approxi-
mations, all of the previous results (e.g., the profiles of
the stationary patterns and the corresponding values of the
nonequilibrium potential) are analytically exact.

The present prediction prompts one to devise experi-
ments (for instance, through electronic setups) as well as
numerical simulations, taking into account the indicated
selective coupling. This result could be of relevance for
technological applications such as signal detection and im-
age recognition, as well as for the solution of some puzzles

FIG. 3. SNR R as a function of the noise intensity g [Eq. (6)],
for three values of h: h � 0.0 (solid line), 20.25 (dashed line),
and 0.25 (dotted line). We have fixed L � 1, D0 � 1, dfc �
0.01, and V � 0.01.
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FIG. 4. Maximum Rmax of the SNR curve (Fig. 3) as a func-
tion of h, for three values of D0: D0 � 0.9 (dashed line), 1
(solid line), and 1.1 (dotted line). The arrows a and b indicate
the response gain due to a homogeneous increase of the coupling
and to a selective one, respectively. The larger gain in the sec-
ond case is apparent. The inset shows the dependence of Rmax
on D0 for h � 20.25 (lower line), 0, and 0.25 (upper line).

in biology (mammalian sensory systems, ionic channels
in cells).

The present form of analysis is being extended to (the bi-
stable regime of) multicomponent models of the activator-
inhibitor-type since— in addition to their applications to
systems of chemical (e.g., Bonhoffer–Van der Pol model)
and biological (e.g., FitzHugh-Nagumo model) origins—
these models are related to spatiotemporal synchronization
problems [1,2,4]. An effective treatment of models of this
type gives rise to a nonlocal coupling, which would com-
pete with the nearest neighbor coupling D�f� presented
here [14].
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