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Entanglement Purification of Gaussian Continuous Variable Quantum States
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We describe an entanglement purification protocol to generate maximally entangled states with high
efficiencies from two-mode squeezed states or from mixed Gaussian continuous entangled states. The
protocol relies on a local quantum nondemolition measurement of the total excitation number of several
continuous variable entangled pairs. We propose an optical scheme to do this kind of measurement using
cavity enhanced cross-Kerr interactions.

PACS numbers: 03.67.Hk, 03.65.Bz, 42.50.–p
Quantum communication, such as quantum key distri-
bution and quantum teleportation, is hampered by the dif-
ficulty to generate maximally entangled states between
distant nodes [1]. Because of loss and decoherence, in real-
ity we can generate only partially entangled states between
distant sides [2]. Entanglement purification techniques are
needed to concentrate maximally entangled states from
partially entangled states [3,4]. For qubit systems, effi-
cient entanglement purification protocols have been found
[3–5]. But none of these purification schemes have been
realized experimentally due to the great difficulty of per-
forming repeated collective operations in realistic quantum
communication systems. Thus, it is of interest to consider
purification of continuous variable entanglement. The non-
local Gaussian continuous variable entangled states (i.e.,
states whose Wigner functions are Gaussians) can be eas-
ily generated by transmitting two-mode squeezed light, and
this kind of entanglement has been demonstrated in the re-
cent experiment of continuous variable teleportation [6].
As the first choice for performing continuous entanglement
purification, one would consider direct extensions of the
purification schemes for qubit systems. But until now, in
these extensions, no entanglement increase has been found
for Gaussian continuous entangled states [7]. Thus, the
discussion should be extended to a larger class of opera-
tions to purify continuous entangled states. Braunstein
et al. [8] have proposed a simple error correction scheme
for continuous variables. However, it is not clear whether
it can be used for purification. In [9] a protocol to increase
the entanglement for the special case of pure two-mode
squeezed states has been proposed, which is based on con-
ditional photon number subtraction; the efficiency, how-
ever, seems to be an obstacle for its practical realization.

In this paper, we present an entanglement purification
scheme with the following properties: (i) For pure states
it reaches the maximal allowed efficiency in the asymp-
totic limit (when the number of pairs of modes goes to
infinity). (ii) It can be readily extended to distill maxi-
mally entangled states from a relevant class of mixed
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Gaussian states which result from losses in the light trans-
mission. Furthermore, we propose and analyze a scheme
to implement this protocol experimentally using high fi-
nesse cavities and cross-Kerr nonlinearities. Our purifi-
cation protocol generates maximally entangled states in
finite dimensional Hilbert spaces. The entanglement in the
continuous partially entangled state is transformed to the
maximally entangled state with a high efficiency. We be-
gin the paper by describing the entanglement purification
protocol for pure two-mode squeezed states, then extend
the protocol to include mixed Gaussian continuous states,
and last describe the physical implementation of the pu-
rification protocol.

First, assume that we have generated m entangled pairs
Ai , Bi (i � 1, 2, . . . , m) between two distant sides A and B.
Each pair of modes Ai , Bi are prepared in the two mode
squeezed state jC�AiBi , which in the number basis has the
form

jC�AiBi �
p

1 2 l2
X̀
n�0

lnjn�Ai jn�Bi , (1)

where l � tanh�r�, and r is the squeezing parameter
[10]. For and only for a pure state, the entanglement is
uniquely quantified by the von Neumann entropy of the
reduced density operator of its one-component. The en-
tanglement of the state (1) is thus given by E�jC�AiBi � �
cosh2�r� log�cosh2�r�� 2 sinh2�r� log�sinh2�r��. The joint
state jC��AiBi � of the m entangled pairs is simply the
product of all the jC�AiBi , which can be rewritten as

jC��AiBi � � �1 2 l2�m�2
X̀
j�0

lj
q

f
�m�
j j j��AiBi � , (2)

where �AiBi� is an abbreviation of the symbol A1, B1,
A2, B2, . . . , and Am, Bm, and the normalized state j j��AiBi �
is defined as

j j��AiBi � �
1q
f

�m�
j

i11i21···1im�jX
i1,i2,...,im

ji1, i2, . . . , im��Ai�

≠ ji1, i2, . . . , im��Bi� . (3)
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The function f �m�
j

in Eqs. (2) and (3) is given by f �m�
j

�
� j1m21�!
j! �m21�! . To concentrate entanglement of these m en-

tangled pairs, we perform a quantum nondemolition
(QND) measurement of the total excitation number
nA1 1 nA2 1 · · · 1 nAm on the A side (we will describe
later how to implement this measurement experimentally).
The QND measurement projects the state jC��AiBi � onto a
two-party maximally entangled state j j��AiBi � with proba-
bility pj � �1 2 l2�ml2jf �m�

j
. The entanglement of the

outcome state j j��AiBi � is given by E�j j��AiBi �� � log� f �m�
j

�.
The quantity Gj � E�j j��AiBi���E�jC�AiBi � defines the
entanglement increase ratio, and, if Gj . 1, we get a
more entangled state. Even with a small number m, the
probability of getting a more entangled state is quite high.
It can be easily proven that, if m goes to infinity, with unit
probability we would get a maximally entangled state with
entanglement mE�jC�AiBi �. This ensures that this method
is optimal in this limit, analogous to the purification
protocol presented in [3] for the qubit case. For any
finite number of entangled pairs, the present purification
protocol is more efficient than that in [3], since it takes
advantage of the special relations between the coefficients
in the two-mode squeezed state.

An interesting feature of this entanglement purification
protocol is that for any measurement outcome j fi 0 we
always get a useful maximally entangled state in some fi-
nite Hilbert space, though the entanglement of the outcome
state j j��AiBi � does not necessarily exceed that of the origi-
nal state jC�AiBi if j is small. It is also interesting to
note that a small alternation of this scheme provides a use-
ful method for preparing GHZ-like (Greenberger-Horne-
Zeilinger) states in high dimensional Hilbert spaces [11].
The key point is that the modes Bi need not be at the same
side in the protocol. Assume we have two entangled pairs
B, A1 and A2, C distributed at three sides B, A, C, with
each pair being prepared in the state (1). Then a local
QND measurement of the modes A1, A2 at the A side with
the outcome j fi 0 generates a three-party GHZ state in
the � j 1 1�-dimensional Hilbert space. Obviously, if we
have m entangled pairs, we can generate a �m 1 1�-party
GHZ state using this method.

In reality, the light transmission will be unavoidably
subjected to loss, and then we will not start from an ideal
two-mode squeezed state, but instead from a mixed state
described by the following master equation:

�r � 2i�Heffr 2 rH
y
eff�

1

mX
i�1

�hAaAi ra
y
Ai

1 hBaBi ra
y
Bi

� , (4)

where r is the density operator of the m entangled pairs
with r�0� � jC��AiBi ��Cj, the ideal two-mode squeezed
state, and the effective Hamiltonian,

Heff � 2i
mX

i�1

µ
hA

2
a
y
Ai

aAi 1
hB

2
a
y
Bi

aBi

∂
. (5)
In Eqs. (4) and (5), aai denotes the annihilation operator
of the mode ai (a � A or B), and we have assumed that
the damping rates hA and hB are the same for all the m
entangled pairs based on symmetry considerations, but hA

and hB may be different to each other.
In many practical cases, it is reasonable to assume that

the light transmission noise is small. Let t denote the
transmission time, then hAt and hBt are small factors. In
the language of quantum trajectories [10], to the first order
of hAt and hBt, the final state of the m entangled pairs
is either jC�0���AiBi � ~ e2iHefftjC��AiBi �, with no quantum
jumps occurred, or jC�ai ���AiBi � ~

p
hat aai jC��AiBi �, with

a jump occurred in the ai channel (a � A, B and i �
1, 2, . . . , m). The final density operator is a mixture of
all these possible states. To purify entanglement from the
mixed state, we perform QND measurements of the total
excitation number on both sides A and B, and the measure-
ment results are denoted by jA and jB, respectively. We
then compare jA and jB through classical communication,
and keep the outcome state if and only if jA � jB. Let
P

� j�
A and P

� j�
B denote the projections onto the eigenspaces

of the corresponding total number operators
Pm

i�1 a
y
Ai

aAi

and
Pm

i�1 a
y
Bi

aBi with eigenvalue j, respectively. It is easy
to show that

P
� j�
A P

� j�
B jC�0���AiBi � � j j��AiBi� ,

P
� j�
A P

� j�
B jC�ai���AiBi � � 0 .

(6)

So, if jA � jB � j, the outcome state is the maximally
entangled state j j��AiBi� with entanglement log� f �m�

j
�. The

probability to get the state j j��AiBi � is now given by p0
j �

�1 2 l2�ml2jf
�m�
j e2�hA1hB�tj . It should be noted that the

projection operators P
� j�
A P

� j�
B cannot eliminate the states

obtained from the initial state jC��AiBi � by a quantum jump
on each side A and B. The total probability for occur-
rence of these kinds of quantum jumps is proportional to
m2n2hAhBt2. So the condition for small transmission
noise requires m2n2hAhBt2 ø 1, where n � sinh2�r� is
the mean photon for a single mode.

In the purification for mixed entanglement, we need
classical communication (CC) to confirm that the measure-
ment outcomes of the two sides are the same, and during
this CC we implicitly assume that the storage noise for
the modes is negligible. In fact, that the storage noise
is much smaller than the transmission noise is a com-
mon assumption taken in all the entanglement purification
schemes which need the help of repeated CCs [4,5]. If
we also make this assumption for continuous variable sys-
tems, there exists another simple configuration for the pu-
rification protocol to work. We put the generation setup
for two-mode squeezed states on the A side. After state
generation, we keep the modes Ai on side A with a very
small storage loss rate hA, and at the same time the modes
Bi are transmitted to the distant side B with a loss rate
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hB ¿ hA. We call this a configuration with an asymmet-
ric transmission noise. In this configuration, the purifica-
tion protocol is exactly the same as that described in the
above paragraph. We note that the component in the final
mixed density operator which is kept by the projection
P

� j�
A P

� j�
B should be subjected to the same times of quan-

tum jumps on each side A and B. We want this compo-
nent to be a maximally entangled state. This requires that
the total probability for sides A and B to subject to the same
nonzero times of quantum jumps should be very small.
This total probability is always smaller than nhAt, de-
spite how large the damping rate hB is. So the working
condition of the purification protocol in the asymmetric
transmission noise configuration is given by nhAt ø 1.
The loss rate hB can be large. The probability to get
the maximally entangled state j j��AiBi � is still given by
p0

j � �1 2 l2�ml2jf �m�
j

e2�hA1hB�tj .
For continuous variable systems, the assumption of

storage with a very small loss rate is typically unrealistic.
If this is the case, then we can use the following simple
method to circumvent the storage problem. Note that the
purpose to distill maximally entangled states is to directly
apply them in some quantum communication protocols,
such as in quantum cryptography or in quantum teleporta-
tion. So we can modify the above purification protocol by
the following procedure: right after the state generation,
we take a QND measurement of the total excitation num-
ber on side A and get a measurement result jA. Then we
do not store the outcome state on side A, but immediately
use it (e.g., perform the corresponding measurement as re-
quired by a quantum cryptography protocol [12]). During
this process, the modes Bi are being sent to the distant
side B and, when they arrive, we take another QND mea-
surement of the total excitation number of the modes Bi

and get an outcome jB. The resulting state on side B can
be directly used (for quantum cryptography, for instance)
if jA � jB, and discarded otherwise. By this method, we
formally get maximally entangled states through posterior
confirmation, and at the same time we need not store the
modes on both sides.

To experimentally implement the above purification
scheme, we need first generate Gaussian continuous en-
tangled states between two distant sides, and then perform
a local QND measurement of the total excitation number
of several entangled pairs. Here we propose a promising
experimental scheme, which uses a high finesse optical
cavity to carry continuous entangled states and cavity
enhanced cross-Kerr interactions to realize the local QND
measurement. It is possible to generate Gaussian continu-
ous entangled states between two distant cavities [13].
We can transmit and then couple the two output lights of
the nondegenerate optical parametric amplifier to distant
high finesse cavities. The steady state of the cavities is
just a Gaussian continuous entangled state described by
the solution of Eq. (4) after taking into account the propa-
gation loss [14]. The difficult part is to perform a QND
4004
measurement of the total photon number contained in sev-
eral local cavities. We use the setup depicted in Fig. 1 to
attain this goal. (For convenience, we use the two-cavity
measurement as an example to illustrate the method. Ex-
tension of the measurement method to multicavity cases
is straightforward.)

The measurement model depicted in Fig. 1 is an ex-
ample of the cascaded quantum system [10]. The incident
light bi1 can be expressed as bi1 � b0

i1 1 g
p

g, where
g
p

g (g is a large dimensionless factor) is a constant driv-
ing field, and b0

i1 is the standard vacuum white noise, satis-
fying �b0y

i1 �t�b0
i1�t0�� � 0 and �b0

i1�t�b0y
i1 �t0�� � d�t 2 t0�.

The Hamiltonian for the Kerr medium is assumed to be
Hi � h̄xnib

y
i bi (i � 1 or 2), where bi is the annihilation

operator for the ring cavity mode, and x is the cross-phase
modulation coefficient. The self-phase modulation can be
made much smaller than the cross-phase modulation with
some resonance conditions for the Kerr medium, and thus
is negligible [15,16]. In the frame rotating at the optical
frequencies, the Langevin equations describing the dynam-
ics in the two ring cavities have the form

�b1 � 2ixn1b1 2
g

2
b1 2

p
g b0

i1 2 gg ,

�b2 � 2ixn2b2 2
g

2
b2 2

p
g bi2 ,

(7)

with the boundary conditions (see Fig. 1) bi2 � bo1 �
b0

i1 1 g
p

g 1
p

g b1 and bo2 � bi2 1
p

g b2. In the re-
alistic case g ¿ x�ni� (i � 1, 2), we can adiabatically
eliminate the cavity modes bi , and express the final out-
put bo2 of the second ring cavity as an operator function
of the observable n1 1 n2. The experimentally measured
quantity is the integration of the homodyne photon cur-
rent over the measurement time T . Choosing the phase of

FIG. 1. Schematic experimental setup to measure the total pho-
ton number n1 1 n2 contained in the cavities I and II. The
cavities I and II, each with a small damping rate k and with a
cross-Kerr medium inside, are put, respectively, in a bigger ring
cavity. The ring cavities with the damping rate g are used to en-
hance the cross-Kerr interactions. A strong cotinuous coherent
driving light bi1�t� is incident on the first ring cavity, whose out-
put bo1 is directed to the second ring cavity. The output bo2�t�
of the second ring cavity is continuously observed through a ho-
modyne detection.
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the driving field so that g � ijgj, the measured observable
corresponds to the operator

XT �
1
T

Z T

0

1
p

2
�bo2�t� 1 b

y
o2�t�� dt

	
4
p

2 jgjx
p

g
�n1 1 n2� 1

1
p

T
X

�b�
T , (8)

where X
�b�
T �

1
p

2
�bT 1 b

y
T �, and bT , satisfying

�bT , b
y
T � � 1, is defined by bT � 1�

p
T

RT
0 b0

i1�t� dt.
Equation (8) assumes g ¿ x�ni� and e2gT ø 1. There
are two different contributions in Eq. (8). The first
term represents the signal, which is proportional to
n1 1 n2, and the second term is the vacuum noise. The
distinguishability of this measurement is given by dn �
p

g��8jgjx
p

T �. If dn , 1, i.e., if the measuring time
T .

g

64jgj2x2 , we effectively perform a measurement of

n1 1 n2; and, if T is also smaller than 1
k�ni � , the photon

loss in the cavities I and II during the measurement is
negligible. So the setup gives an effective QND measure-
ment of the total photon number operator n1 1 n2 under
the condition

g

64jgj2x2 , T ,
1

k�ni�
. (9)

This condition seems to be feasible with the present
technology. For example, if we assume the cross-Kerr
interaction is provided by the resonantly enhanced Kerr
nonlinearity as considered and demonstrated in [15,16],
the Kerr coefficient x�2p 
 0.1 MHz would be obtain-
able [17]. We can choose the decay rates k�2p 
 4 MHz
and g�2p 
 100 MHz, and let the dimensionless fac-
tor g 
 100 (for a cavity with cross area S 
 0.5 3

1024 cm2, g 
 100 corresponds to a coherent driving
light with intensity about 40 mW cm22). The mean pho-
ton number �n1� � �n2� � sinh2�r� 
 1.4 for a practical
squeezing parameter r 
 1.0. With the above parameters,
Eq. (9) can be easily satisfied if we choose the measuring
time T 
 8 ns. More favorable values for the parameters
are certainly possible.

To bring the above proposal into a real experiment, there
are several imperfect effects which should be considered.
These imperfections include phase instability of the driv-
ing field, imbalance between the two ring cavities, light
absorption of the Kerr media and the mirrors, self-phase
modulation effects, light transmission loss between the
ring cavities, and inefficiency of the detectors. To realize
a QND measurement, the imperfections should be small
enough. We have deduced quantitative requirements for
all the imperfections listed above [18]. With the parame-
ters given in the above paragraph, all these requirements
can be met experimentally.
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