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Staggered-Vorticity Correlations in a Lightly Doped t-J Model: A Variational Approach
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We report staggered-vorticity correlations of current in the d-wave variational wave function for the
lightly doped t-J model. Such correlations are explained from the SU�2� symmetry relating d-wave and
staggered-flux mean-field phases. The correlation functions computed by the variational Monte Carlo
method suggest that pairs are formed of holes circulating in opposite directions.

PACS numbers: 74.25.Jb, 71.10.Fd, 71.27.+a
Flux phases have been proposed as mean-field solutions
to two-dimensional antiferromagnets [1]. For the undoped
Heisenberg antiferromagnet, the staggered-flux variational
wave function gives a relatively good energy [2–4], even
without the Néel long-range order. However, for doped
systems, staggered-flux phases would normally break the
translational and the time-reversal symmetries, except at
the flux value of p . Besides, the physical meaning of the
flux is not transparent. It has been suggested that flux
is related to the spin-chirality correlations [5], but such
correlations are very complicated for both experimental
and theoretical study.

Remarkably, in the case of doped t-J or Hubbard
models, there is one more indication of a staggered-flux
phase. Namely, the current-current correlations may show
the staggered-flux pattern inherited from the mean-field
phase. We find such a pattern in the Gutzwiller-projected
d-wave variational wave function for the t-J model. Those
correlations may be explained by the SU�2� equivalence
between the d-wave-pairing and staggered-flux phases.
Finally, we interpret the staggered-flux structure of cur-
rent correlations as a pairing between holes of opposite
“staggered vorticity.”

Consider first the d-wave variational wave function
[2,3]:

C � PG
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where PG is the projection onto the states with a fixed
number of electrons and without doubly occupied sites.
The coherence factors uk and yk are of the BCS form for
d-wave pairing:
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jk � 22�coskx 1 cosky� 2 m,

Dk � D�coskx 2 cosky� . (2)

For simplicity, we consider the case m � 0. Tuning m

improves the energy by only 0.2%, and the current corre-
lations reported in this paper remain practically the same.

The energy optimization for the wave function (1) has
been performed by Yokoyama and Ogata [3]. At zero dop-
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ing, the energy is minimized at D � 0.55, and the optimal
value of D decreases with doping. In the range of parame-
ters related to cuprate superconductors, the characteristic
doping at which the gap closes is about 40% [3]. The
numerical results reported in this paper were obtained at
D � 0.55, at various dopings up to 10%, which is a rea-
sonable approximation for qualitative analysis. We have
verified that the qualitative picture of the correlation func-
tions remains the same in the whole range of the gap values
D (the correlations are smaller at small D, which will be
interpreted as the limit of staggered flux going to zero).

Using the variational Monte Carlo (VMC) method, we
computed the current-current correlations for the wave
function (1) in a finite system (2 holes in the 10 3 10 lat-
tice with periodic-antiperiodic boundary conditions, D �
0.55). The current on a link �ij� is defined as

jij � 2jji � i�cy
aicaj 2 c

y
ajcai� . (3)

The correlation function exhibits a staggered-flux struc-
ture (Fig. 1). Since the current vanishes as the hole
concentration x ! 0, we have divided the correlation
function by x. We introduce vorticity V for any plaquet
as a sum of the currents around it in the counterclockwise
direction: V � � j12 1 j23 1 j34 1 j41��. The vorticity
correlations (Fig. 1b) obtained from the current-current
correlations in Fig. 1a have alternating signs with a phase
shift of p , so that the sign of �V �0�V �R�� is �21�Rx1Ry11.

This staggered-vorticity correlation is a surprising con-
sequence of the projection, because it is absent in the un-
projected d-wave wave function. In order to understand
this, we show below that the same wave function can be
written as a projection of a staggered-flux state. This has
the advantage that properties that are obscure in one rep-
resentation may become obvious in another. For example,
the staggered-flux wave function is an insulator with gap
nodes. The appearance of superconductivity after projec-
tion is a surprise, but vorticity and attraction between holes
appear naturally, as we shall discuss below.

The basic starting point is the SU�2� symmetry in
the fermion representation of the t-J model. This is
well understood in the undoped case [6], where SU�2�
doublets c"i � � f"i , f

y
#i � and c#i � � f#i , 2f

y
"i � represent

the destruction of spin-up and spin-down in the subspace
© 2000 The American Physical Society
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FIG. 1. (a) Current-current correlations for 2 holes in the 10 3
10 lattice at D � 0.55 and m � 0. Boundary conditions are
periodic in one direction and antiperiodic in the other direction
(the data are averaged over the two orientations). The number
on a link is the correlation of the current on this link and of
the current on the circled link divided by hole density. The
arrows point in the direction of the positive correlations of the
current. (b) The same data in the form of vorticity correlations.
The number on a plaquet is the vorticity correlation (divided by
x) with the crossed plaquet. (c) Same as (b) for 10 holes in
10 3 10 lattice.

of one fermion per site. Wen and Lee [7] extended
this symmetry away from half filling by introducing a
doublet of bosons bi � �b1i , b2i�. The physical electron is
represented as an SU�2� singlet formed out of the fermion
and boson doublets cai �

1
p

2
b
y
i cai .

At the level of variational wave functions, the constraint
of no double occupation is enforced by projecting the
fermion-boson wave function onto the SU�2�-singlet sub-
space of the Hilbert space. On each site, there are only
three physical states: spin-up, spin-down and a hole,

j "� � f
y
" j0�, j #� � f

y
# j0� ,

j�� �
1
p

2
�by

1 1 b
y
2 f

y
" f

y
# � j0� .

(4)

The projector may be written as
PSU�2� �
Y

i

�j "� �" j 1 j #� �# j 1 j�� ��j�i . (5)

It should be applied to a mean-field state with the total
number of bosons defining the number of doped holes.
The mean-field Hamiltonian has the form

H �
X
�ij	


Jc
y
aiUijcaj 1 t�by

i Uijbj 1 H.c.��

1
X

i

a
m
i

µ
1
2

c
y
aitmcai 1 b

y
i tmbi

∂
, (6)

where Uij are SU�2� matrices representing generalized
hopping amplitudes (mean-field parameters), for nearest-
neighbor sites i and j, and tm are Pauli matrices. The
parameters a

m
i are the Lagrange multipliers enforcing the

no-double-occupancy constraint at the mean-field level. In
our approach, the constraint is realized by the projection,
and the quantities a

m
i become simply additional variational

parameters. In this paper we set a
m
i � 0. Numerically, the

effect of this term on the correlations is minor.
In the underdoped region, the mean-field solution is the

staggered-flux phase characterized by

Uij � eiaijt3 , (7)

with aij � �21�x�i�1y� j�w�4 forming a staggered-flux pat-
tern around plaquets of the lattice, as shown in Fig. 2a
(the overall normalization of Uij is of no importance for
the wave function). The gauge-invariant variational pa-
rameter of the staggered-flux ansatz is the flux per plaquet
w �

P
� aij . Even though the ground-state wave function

breaks time-reversal and translational symmetries, these
symmetries are restored after the projection (5).

Even with hole doping, the fermion bands are exactly
half filled, and therefore the number of “no-fermion” sites
is equal to the number of “two-fermion” sites. This is
shown in Fig. 2b. Note that both of these sites are spin
singlets and have the right spin quantum number for a
physical hole. In SU�2� theory, a b1 boson is attached to
the no-fermion site and a b2 boson to the two-fermion site,
and both become physical holes, according to Eq. (4). In

FIG. 2. (a) Staggered-flux phase. Links with arrows corre-
spond to aij � w�4 in the direction of the arrow. (b) A typical
configuration of the half-filled fermion state. Arrows denote fer-
mions. Circled sites are physical holes which are spin singlets
made up of either empty or two-fermion sites. b1 and b2 bosons
are assigned to these respective sites.
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the mean-field theory, the bosons condense to the bottom
of their respective bands, which are located at Q1 � 0 and
Q2 � �p, p�. The prescription of constructing an SU�2�
projected wave function is as follows. The physical wave
function is specified by the location of the up spins and
the holes (circled sites in Fig. 2b). A given set of holes is
partitioned into all possible no-fermion and two-fermion
sites, denoted by �r1	, �r2	. Each partition specifies a
configuration of the staggered flux wave function given
by a product of two Slater determinants (for spin-up and
spin-down spinons). To this we multiply the phase factor
exp
i

P
�r1	,�r2	 �Q1 ? r1 1 Q2 ? r2�� to represent the Bose

condensation of b1, b2 and sum over all partitions. An ad-
ditional sign depending on the ordering of sites is needed
to preserve the antisymmetry of the wave function. This
prescription realizes the projection PSU�2� of a mean-field
staggered-flux state to the SU�2� singlet subspace.

Next we prove the equivalence of the SU�2� projected
staggered flux phase with the pairing state (1). Such
an equivalence is known in the undoped case [1]; we
extend it to doped systems. We note that the mean-field
ground state of the staggered flux phase has the form
jFmean� � jFf� ≠ jFb�, where jFb� � eb̄1B

y

1 1b̄2B
y

2 j0�
with �B1, B2� � 


P
i b1i ,

P
i �21�ib2i�, and jFf� is the

fermion state in the staggered flux phase [Eqs. (6) and
(7)]. Complex numbers b̄1 and b̄2 parametrize the Bose
condensate, where b1,2 condense into their band bottoms:
BajFb� � b̄ajFb�. The SU�2� projection selects the
subspace with equal numbers of B1 and B2 bosons, and
therefore states corresponding to different choices of b̄1
and b̄2 differ after projection only by a one-parameter
transformation exp�lNh�, where l is a complex parameter
and Nh is the number of holes. If we fix the average
hole concentration, the wave function is defined unam-
biguously, up to an unimportant gauge exp�lNh� with
Rel � 0.

The staggered-flux mean-field state is related to the
d-wave state by a SU�2� rotation Wi � exp
�21�i p

4 t1�:

U 0
ij � WiUijW

y
j ~

√
1 6D�2

6D�2 21

!
, (8)

where the sign of D is opposite for vertical and horizontal
links, and D is related to w by

tan
w

4
�

D

2
. (9)

After the SU�2� rotation, the mean-field state has
the same form, except jFf� is replaced by jF0

f�, the
fermion d-wave state of the BCS form (1), and the
bosonic parameters b̄a are rotated: b̄0

1 � �b̄1 1 ib̄2��
p

2,
b̄0

2 � �ib̄1 1 b̄2��
p

2. Since the two mean-field states
are related by a SU�2� gauge transformation, they lead
to the same physical state after the SU�2� projection:
PSU�2�jFmean� � PSU�2�jF

0
mean�. The freedom in the

choice of the bosonic parameters b̄1 and b̄2 established
in the staggered-flux gauge allows us to set b̄0

2 � 0,
and then the SU�2� projection becomes equivalent to the
3960
conventional Gutzwiller projection. This proves that the
SU�2� wave function is identical to the conventionally
projected wave function. Of course, the above proof
applies equally to the systems with fixed numbers of holes
which we use in our VMC calculation. In this case, the
SU�2� projected wave function is identical to that given
by Eq. (1) at m � 0.

In the ground state of the staggered-flux mean-field
Hamiltonian [Eq. (6) with Uij given by (7)], the b1 and
b2 bosons attract each other. This can be understood
from the correlation function for the “excess density
of fermions”:

�
1 2 nf�i�� 
1 2 nf� j��� � ��1 2 f
y
aifai� �1 2 f

y
ajfaj��

� 2j� f
y
aifaj�j2 , 0 (10)

at the mean-field level. This means that around a
no-fermion hole (b1 hole) with 1 2 nf�i� . 0 there is a
region of an increased probability to find a two-fermion
hole (b2 hole) with 1 2 nf� j� , 0, and vice versa.
The mean-field Green’s function G�i, j� � � f

y
aifaj�

decays as R22 at large distances R � ji 2 jj. This is
a consequence of the nodes k � �6p�2, 6p�2� in the
mean-field spectrum

E�k� ~

r
cos2kx 1 cos2ky 1 2 cos

w

2
coskx cosky .

(11)

Thus, at the mean-field level, the attraction of the two
species of holes leads to a R24 decay of the density-density
correlations. After the projection, the attraction becomes
much weaker, but still survives, as we shall see from our
VMC computations. This attraction between holes was
observed earlier [2], but was difficult to explain in the
d-wave gauge.

In Fig. 3 we plot the correlations of the hole density
nh�i� � 1 2 c

y
aicai and of the vorticity V at D � 0.55

for two holes in an 18 3 18 lattice as functions of dis-
tance. We observe power-law decay of both correlations,
�nh�0�nh�R�� ~ �V �0�V �R�� ~ R2a , with the equal expo-
nents a � 1.2.

The reduction of the exponent a from its mean-field
value a � 4 is due to the projection. For the case of
two holes (“zero-doping limit”), this reduction is so
strong that a , 2 and, as a consequence of the sum ruleP

R �nh�0�nh�R�� � nh, the two holes become unbound as
the size of the system increases.

The proportionality of the vorticity and density corre-
lations, together with the sign of the vorticity correla-
tions, suggests that the two holes may be thought of as
carrying opposite staggered vorticity. This can be justi-
fied if we fix the gauge and describe the wave function
as the staggered-flux phase. At the mean-field level, this
breaks the time-reversal symmetry, and the fermions in the
filled single-particle states carry a nonzero staggered vor-
ticity with � j

f
ij� fi 0, where j

f
ij � i� f

y
aifaj 2 f

y
ajfai� is

the (unphysical) fermion current. The SU�2� projection
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FIG. 3. Hole density and staggered-vorticity correlations for
2 holes and staggered-vorticity correlations for 16 holes in
the 18 3 18 lattice. Boundary conditions are periodic in one
direction and antiperiodic in the other direction, D � 0.55.
The correlation functions are divided by the density of holes
x and plotted as a function of the squared distance. The
data are obtained as a result of averaging over 2 3 104

samples for a 2�18 3 18 system and 2 3 103 samples for
a 16�18 3 18 system.

(5) restores the time-reversal symmetry, and for the pro-
jected wave function � jij� � 0, for the physical current
jij . In the staggered-flux gauge (7), at the mean-field level,

jij � j
f
ij for b1 holes and jij � 2j

f
ij for b2 holes. Thus

� jij� � 0 for the physical current is a result of the bal-
ance between the opposite staggered vorticity of b1 and
b2 holes. The attraction between the two SU�2� species
of holes then implies attraction between holes circulating
in the opposite directions. For a finite system with two
holes, the holes are always of opposite SU�2� types, which
results in the proportionality between the vorticity and
density correlations.

The above picture can be summarized in the expres-
sion Ṽ ~ r1 2 r2, where Ṽ is the staggered vorticity
�2�RV �R� for the physical current jij , and r1,2 are the den-
sities of the two bosons b1,2. The correlations of the stag-
gered vorticity and of r1 2 r2 are related �Ṽ �R�Ṽ �0�� ~

�r1�R�r1�0�� 1 �r2�R�r2�0�� 2 2�r1�R�r2�0��. When
there are only two holes �r1�R�r1�0�� � �r2�R�r2�0�� �
0, we find that

�Ṽ �R�Ṽ �0�� ~ 2�r�R�r�0�� , (12)

where r � r1 1 r2 is the total density of the holes. The
minus sign explains the p phase shift seen in Fig. 1.

If we assume pairing between holes of opposite stag-
gered vorticity, we may interpret the vorticity correlations
as the hole correlations within one pair which allow us to
determine the strength of the pairing correlation (even for
finite density of holes) and measure the size of pairs. At
finite density of holes, the correlation of the staggered vor-
ticity decays faster. In Fig. 3 we also present the correla-
tion for 16 holes in an 18 3 18 lattice (nearly 5% doping)
at D � 0.55. We find a � 2.2. The increase of a above 2
may be interpreted as a formation of bound hole pairs (and
hence the onset of superconductivity). The small value of
a 2 2 after the projection implies that the pairs are bound
very loosely and their size is large. In this case, the near-
est-neighbor pairing amplitude �ci"cj#� is small, which may
account for numerical conclusions about the absence of su-
perconductivity at J�t , 0.5 [8,9].

While the staggered vorticity correlation is found for
a superconducting wave function, we speculate that the
phase coherence of the bosons may not be crucial and that
such correlation may survive above Tc in the pseudogap
state, and indeed serves as a signature of that state. Un-
fortunately, detection of this correlation may be difficult.
We estimate that the fluctuating current generates a fluc-
tuating staggered magnetic field of order 40 G. This field
will contribute to the relaxation of the Y nuclei, which are
ideally sited above the center of the plaquets. However,
we do not have dynamical information at present and it is
difficult to predict the magnitude of this orbital relaxation.
Another possibility is to freeze in some staggered field pat-
tern around an impurity site. If some Y is replaced by an
impurity with spin S which strongly couples to the orbital
current in the Cu-O plane, we may use a magnetic field
to align the spin and therefore create a static orbital cur-
rent via the L ? S term. The staggered current correlation
suggests that the staggered response function may be en-
hanced, in which case this local orbital current generates a
static staggered pattern around it, which may be detected
by shifts in the Y NMR line. Perhaps a more promising
way to test our prediction is to look for this effect in exact
diagonalization of small systems.
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