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Continuous transitions between states and the same symmetry but different topological orders are
studied. Clean quantum Hall (QH) liquids with neutral nonbosonic quasiparticles are shown to have
such transitions under the right conditions. For clean bilayer �mmn� states, a continuous transition to
other QH states (including non-Abelian states) can be driven by increasing interlayer repulsion/ tunneling.
The effective theories describing the critical points at some transitions are obtained.

PACS numbers: 73.40.Hm, 73.20.Dx
Matters have several different states, such as solid, gas,
superfluid, etc., under different conditions. According to
Landau’s theory, all of those states of matters are charac-
terized by their symmetries. Quantum Hall (QH) liquids
discovered in 1982 [1,2] in 2D electron gas form a new
state of matter which contains a completely different type
of order (called topological order [3]). The topological
order is new since it is related to chiral operator product
algebra instead of symmetries [3].

One way to gain a better understanding of the states of
matter is to study continuous transition between different
states. For the states characterized by symmetries, continu-
ous transitions between them are characterized by a change
of symmetry. The transition point is described by a criti-
cal theory which demonstrates various scaling properties.
Similarly, to gain a better understanding of the topological
orders, we can also study continuous transitions between
different QH liquids. Since the topological orders are not
characterized by symmetries, some fundamental questions
naturally arise: (1) Do continuous phase transitions exist
between different QH liquids? (2) Are the transition points
described by critical theories with scaling properties?

In the presence of disorders, the transitions between
quantum Hall liquids are believed to be continuous and are
described by critical points. But in this paper, we would
like to avoid the complication of disorders and would like
to concentrate on a nonrandom system. It was pointed
out in Ref. [4] that a continuous transition between two
QH liquids of difference filling fractions can happen if
we turn on a proper periodic potential. This allows us
to study continuous phase transitions between QH liquids
without introducing disorders. The transitions studied in
Refs. [5,6] for paired states are other examples of continu-
ous transitions (where a periodic potential is not needed).
In this paper we apply the results from Ref. [4] to study
the transitions between two QH liquids of the same filling
fraction. We see, in this case, that the transitions can some-
times be continuous even without periodic potentials (and
disorders). Such continuous transitions between clean QH
states can actually appear in bilayer QH states. We will
study some simple bilayer QH states and determine under
which conditions we are likely to observe the continuous
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phase transition. The transitions between the paired states
[5,6] are special cases of the transitions studied in this pa-
per. Since the continuous transitions studied in this pa-
per are transitions between two QH states with the same
symmetry, they are fundamentally different from the usual
continuous transitions which change the symmetry in the
states. We call such transitions continuous topological
phase transitions.

We start with an Abelian QH state described by �K , q�
with a Chern-Simons (CS) effective theory [7]

L � 2
1

4p
KIJaIm≠naJl´mnl 2

e
2p

qIAm≠naIl´mnl,

(1)
where K is a symmetric integer matrix and q is an integer
vector. The quasiparticles are labeled by integer vectors
l. The charge and the statistics of such a quasiparticle are
given by

ul � plTK21l, Ql � 2elTK21q . (2)

Now assume that we have a gas of quasiparticles labeled
by l on top of the �K , q� state. The filling fraction of the
quasiparticle gas is nq �

nqhc
QlB , where nq is the quasiparti-

cle density. If nq �
1

ne2
ul
p

for an even integer ne, then the

quasiparticles can form a Laughlin state, and we obtain a
new Abelian QH liquid labeled by (see Blok and Wen in
Ref. [7])

K 0 �

µ
K 2l

2lT ne

∂
, q0 �

µ
q
0

∂
. (3)

Now let us consider a transition induced by condensation
of charge neutral quasiparticles labeled by l. We assume
that the quasiparticles labeled by l and 2l (the antiquasi-
particles) have the lowest energy gap (so that they control
the transition). The low energy effective theory for the
quasiparticles and the antiquasiparticles has a form

L � j�≠0 1 ia0�fj2 2 y2j�≠i 1 iai�fj2 2 m2jfj2

2 gjfj4 2
p

ul

1
4p

am≠nalemnl. (4)

Binding additional ne flux quanta �ne � even� to the
bosonic field f gives us composite boson field f̃. The
effective theory can also be written in terms of f̃,
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1
1
ne
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4p

bm≠nblemnl. (5)

Here 2m is the energy gap for creating a quasiparticle-
antiquasiparticle pair.

Near the transition, two parameters m2 and a0 are im-
portant. (We can always assume b0 � 0 without losing
generality.) The (mean field) phase diagram is sketched in
Fig. 1.

The transition at a0 � m2 � 0 is the transition from the
�f̃� � 0 phase [the �K , q� phase] to the �f̃� fi 0 phase
[the �K 0, q0� phase]. Both �K , q� and �K 0, q0� phases have
finite energy gap, while gapless neutral excitations appear
at the transition point. The effective theory [Eq. (5)] for the
transition is identical to the one studied in Ref. [4]. It was
shown that the transition is continuous at least in a large N
limit [4]. The transition point is a critical point with scaling
properties. Some critical exponents at the transition point
�a0 � m2 � 0� were calculated in the large N limit.
m2

gapless
phase

gapless
phase

a0

QH liquid QH liquid

(K,q)(K’, q’)

FIG. 1. The phase diagram near a critical point.

We see that a continuous transition between the two QH
liquids �K , q� and �K 0, q0� can happen even without the
lattice if Ql � 0. A QH state with neutral quasiparticles
can have a continuous phase transition to another QH state
even in the clean limit. One can show that the two QH
states always have the same filling fraction.

We can also bind an odd number no flux quanta to f

and use an effective composite fermion theory to describe
the transition
L � cy�≠m 1 iam 1 ibm�tmc 2 mcyt3c 1 Cy�≠m 1 iam 1 ibm�tmC 2 MCyt3C

2
p

ul

1
4p

am≠nalemnl 1
1
no

1
4p

bm≠nblemnl, (6)
where t0 � 1 and tiji�1,2,3 are the Pauli matrices and c

and C are two-component fermion fields. M is a large
number and C is the regularization field. Integrating out
c and C generates a CS term 2

sgn�M�u�mM�
4p am≠nalemnl.

The (mean field) phase diagram for composite fermion
effective theory is identical to that of composite boson
(Fig. 1), if we replacem2 by 2mM. The critical properties
of Eq. (6) at a0 � m � 0 are studied in Ref. [8]. The
transition are shown to be continuous in the limit ul ! p

and no � 0. Both Eqs. (5) and (6) describe the same set
of transitions, labeled by ne or no . The two sets of labels
are related by ne � no 2 sgn�M�.

In general, after transition, the new QH liquid described
by �K 0, q0� contains dim�K� 1 1 edge branches, since
dim�K 0� � dim�K� 1 1. The quantum number of the
quasiparticles is given by Eq. (2). However, when �K 0, q0�
contains neutral null vectors [9,10], the �K 0, q0� QH liquid
is really a QH liquid described by a reduced �K̃ , q̃� with
dimension dim�K� 2 1 [9,10]. A calculation of �K̃ , q̃�
from �K 0, q0� was outlined in Ref. [9]. We would like to
point out that, if ne � 0 in Eq. (3), �K 0, q0� always has
at least one neutral null vector lTnull � �lT , 0�, and the
transition reduces the number of edge branches.

Now let us study a concrete bilayer �nn0� state to gain
more detailed understanding of the transitions. Here n is
odd if electrons are fermions, and n is even if electrons
are bosons. The electrons form a n � 1�n Laughlin state
in each layer. The quasiparticle labeled by lT � �21, 1�
is neutral and has statistics ul � 2p�n. Such a neutral
quasiparticle corresponds to a bound state of the charge
2e�n Laughlin quasiparticle in one layer and the charge
e�n Laughlin quasihole in the other layer. If the Laughlin
quasiparticle and quasihole in the two layers have strong
enough attraction (this happens when there is a strong
interlayer repulsion), the quasiparticle-quasihole pair [i.e.,
the neutral quasiparticle labeled by lT � �21, 1� and the
neutral antiquasiparticle labeled by lT � �1, 21�] will
be spontaneously generated. This will cause a phase
transition.

To understand the nature of the transition, let us first
assume that the neutral (anti)quasiparticles are bosons
with u � 0. The dynamical properties of the neutral
(anti)quasiparticles can be modeled by a lattice-boson
system which only allows 0, 1, or 2 bosons per site.
The average boson density is one boson per site. In
the lattice-boson model, an empty site corresponds to
the neutral antiquasiparticle, a doubly occupied site
corresponds to the neutral quasiparticle, and a singly
occupied site correspond to no quasiparticle. Let us first
ignore the boson hopping. When the interlayer repulsion
is much weaker than the intralayer repulsion, the ground
state of the lattice-boson model has exactly one boson per
site, and is a Mott insulator. If the interlayer repulsion
is much stronger than the intralayer repulsion, the lat-
tice-boson model has two degenerate ground states, one
has two bosons per site and the other has no boson. This
corresponds to a charge unbalanced state, where electrons
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have different densities in the two layers. Such a charge
unbalanced state has been observed in experiments [11].
In the presence of boson hopping, before going into
the charge unbalanced phase, the boson Mott insulator
must undergo a continuous phase transition into a boson
superfluid phase. [The effective theory near the boson
Mott insulator to superfluid transition is given by Eq. (5)
without the gauge fields.] This is the phase transition
between the K and K 0 states. In the boson condensed
phase, the bosons condense into a state described by a
constant wave function F��zi�; �wi�� � const, where the
complex number zi �wi� are coordinates of the neutral
quasiparticles (antiquasiparticles).

When u fi 0, the phase diagram is similar to the one for
u � 0 (at least in the large N limit [4]), and the picture
discussed above still applies. The effective theory near the
transition is given by Eq. (5) with the CS term. In general
the (anti)quasiparticle can condense into a state described
by wave function

Y
i,j

��zi 2 zj� �wi 2 wj�	ne2u�p
Y
i,j

�z�
i 2 w�

j �ne2u�p ,

(7)

where ne is a certain even integer which corresponds to the
ne in Eq. (5).

In the dilute limit, the state with minimal jne 2
u

p j is
expected to have the lowest energy. Therefore, if n $ 2,
as we increase the interlayer repulsion, the �nn0� state will
transform into a QH state with

K3 �

0
B@ n 0 1

0 n 21
1 21 0

1
CA, q3 �

0
B@ 1

1
0

1
CA (8)

via a continuous transition.
What is the �K3, q3� state? It is nothing but the �K , q� �

�2n, 2� state, i.e., the n � 1�2n Laughlin state of charge-
2e bosons (the Hall conductance is sxy � n�2e�2�h). This
is because, after a SL�3,Z� transformation, the �K , q� in
Eq. (8) can be rewritten as

K �

0
B@ 2n 0 0

0 n%2 21
0 21 0

1
CA, q �

0
B@ 2

1
0

1
CA , (9)

where n%2 � 1 if n � odd, and n%2 � 0 if n � even.
According to Haldane’s topological instability [9,10],
Eq. (9) just describes the �K , q� � �2n, 2� state. On
the edge, the three edge branches described by K3 in
Eq. (9) can be viewed as the reconstructed edge of the
�K , q� � �2n, 2� state [10].

When n � 2, the effective theory [Eq. (5)] can be
mapped into a free fermion model (since the interaction
terms are irrelevant)

L � cy≠mtmc 2 mcyt3c . (10)

The effective free fermion theory allows us to calculate
all of the physical properties of the transition, and we can
show rigorously that the transition is continuous.
3952
The effective theory [Eq. (5)] for the transition has a
U�1� symmetry— the conservation of the neutral quasi-
particle f. However, such a U�1� symmetry is broken
by interlayer electron tunneling which creates n neutral
(anti)quasiparticles. The electron tunneling operator has a
form M̂fn, where M̂ is an operator that creates one unit of
am flux. Note that the combination M̂fn is gauge invari-
ant and the effective Hamiltonian/Lagrangian equation (5)
should contain a term tM̂fn 1 H.c. to describe the elec-
tron interlayer tunneling.

When n is large, we expect the tunneling term tM̂fn 1

H.c. to be irrelevant, and it can affect the properties of the
transition only if t is large. When n is small the effect of
the tunneling term may be important even in the small t
limit. When the tunneling term is important, its effect is
hard to study. However, since the effective theory for n �
2 can be mapped into a free fermion model, the effect of
the tunneling term on the transition can be studied exactly.
This situation has been studied in Refs. [5,6] for a related
(331) state [or a more general �q 1 1, q 1 1, q 2 1� state
in Ref. [5] ]. In the following we will show how to make
contact with their derivation.

For n � 2, we start with the fermionic effective theory
[Eq. (10)]. Since the electron tunneling operator creates a
pair of quasiparticles c , it has a form cTt2c . Thus the
effective Lagrangian with tunneling can be written as

L � cy≠mtmc 2 mcyt3c 1 �tcTt2c 1 H.c.� ,
(11)

where t is the amplitude of the interlayer electron tun-
neling. After diagonalization, the Hamiltonian becomes
H �

P
k,a�6 Ea�k�ly

a,kla,k with

E6�k� �

r
k2 1 m2 1 jtj2 6 2

q
m2jtj2 1 k2�Imt�2 .

(12)

The system contains gapless excitations (i.e., reaches a
critical point) when m � jtj or m � 2jtj. We see that the
single transition point is split into two transition points by
the tunneling term. The new phase diagram is sketched
in Fig. 2. Near the new transition points the low en-
ergy excitations are described by one free gapless Majo-
rana fermion H �

P
k

p
y2k2 1 �jtj 2 jmj�2l

y
klk, where

y � 1 2
�Imt�2

jmtj . This agrees with the result obtained in
Refs. [5,6]. Again, all of the physical properties of the
transition can be calculated from the above free fermion
effective theory. The state between the two new transition
points [5,6] is a non-Abelian Pfaffian state (for bosons)
proposed by Moore and Read [12]. It was suggested [13]
that such a p-wave paired state may describe the n � 5�2
state observed in experiments.

From the phase diagram Fig. 2 (which has been given
in Ref. [5]), we see that the continuous transition from
the (220) state to the non-Abelian Pfaffian state can also
be induced by increasing the interlayer tunneling t. One
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FIG. 2. The phase diagram for the (220) state in the presence
of interlayer tunneling. We have assumed Imt � 0. The left
diagram has a fixed t and the right one has a0 � 0.

naturally asks what type of QH state can a large t induce
from the �nn0� state?

We first note that the analytic part of the �nn0� ground
state wave function can be written as a correlation function
of �2 1 0�D chiral fermions [12,14]. The chiral fermions
ci are defined by operator product expansion (OPE)
c

y
i �z�cj�0� � dij�z, where z � x 1 iy. By introducing

electron operators in the two layers ce1 �
Qn
i�1 ci and

ce2 �
Q2n
i�n11 ci , the �nn0� wave function can be written

as F�nn0���zi�; �wi�� � �e2iNf
QN
i�1 ce1�zi�ce2�wi��,

where the boson field f is defined by 1
2p ≠zf�z� �P2n

i�1 c
y
i �z�ci�z�.

For the (220) state, after the transition, the wave function
of the resulting Pfaffian state is just the (220) wave func-
tion symmetrized between zi and wj . Such a wave
function can be written as a correlation function of a
single electron operator ce � ce1 1 ce2:

Fnab�z1, . . . , z2N � �

*
e2iNf

2NY
i�1

ce�zi�

+
. (13)

Since only a single electron operator is involved, Fnab is
a single layer state. This is consistent with the fact that the
Fnab state is induced by a large interlayer tunneling.

Here we would like to conjecture that a similar phe-
nomenon will also happen for the �nn0� state with n . 2.
A large interlayer tunneling t will change the �nn0� state
into the Fnab state defined in Eq. (13).

When n � 3, we find that the Fnab state is a non-
Abelian state. The edge excitations are generated by ce’s
and cy

e ’s [14]. Through the OPE of ce and cy
e , one can

show that the neutral edge excitations are generated by r1,
r2

2 and cos�3nf2�, where r6 are the currents in U�1�2

Kac-Moody algebra and f6 are defined by ≠zf6�2p �
r6. Physically, r1 corresponds to the total electron den-
sity and r2 corresponds to the difference of the elec-
tron densities in the two layers. They have the following
OPE: ra�z�rb�0� � 2dab�3z2. The electron operator can
be written as ce � ei3f1�2 cos�3f2�2� through bosoniza-
tion. Thus the electron propagator along the edge has an
exponent 3: �cecy

e � 
 z23. The quasiparticle operators
must be mutually local with respect to the electron opera-
tor [3]. We find that the quasiparticles with the lowest
charge are created by cq � eif1�2 cos�f2�2� which car-
ries charge e�3. The quasiparticle propagator has an ex-
ponent 1�3. The electron and the quasiparticle exponents
and charges (and hence the edge tunneling I-V curve) for
our single layer n � 2�3 non-Abelian state are identical
with the n � 1�3 Laughlin state.

Since all of the charged excitations remain to have finite
energy gap across the transition, the continuous topological
phase transitions discussed in this paper may not be easy
to observe. Notice that the neutral gapless excitations at
the transition carry an electric dipole moment in the z
direction. Thus one way to detect them is to use surface
acoustic phonons. Also, the edge states before and after
the transition are very different. Near the transition, the
velocity of one edge mode approaches zero, and such a
mode becomes the gapless bulk excitation at the transition.
Thus the transition should also be detectable through edge
tunneling experiments.

We would like to mention that the phase diagram for the
�n,n,m� state is the same as that of the �n 2 m, n 2 m, 0�
state discussed above. The neutral excitations in the two
states are identical. As a consequence, the critical theories
for the transitions in the two states are identical. The
results in this paper can be easily generalized to any �mnl�
bilayer states and hierarchical states.
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