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Excitation Spectrum and Effective Mass of the Even-Fraction Quantum Hall Liquid
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To probe the nature of the even-fraction quantum Hall system, we have investigated the low-lying
excitation spectrum by exact diagonalization for finite systems. We have found (i) a striking one-to-one
correspondence (i.e., a shell structure) between the spectrum and those for free (composite) fermions,
(ii) a surprisingly straight scaling plot for the excitation energy that gives a zero gap (metal) in the thermo-
dynamic limit, (iii) the effective mass evaluated from the scaling becoming heavier for n � 1�2, 1�4, 1�6,
but (iv) some deviations from the single-mode or the Hartree-Fock composite fermion approximation.

PACS numbers: 73.40.Hm
In the physics of the fractional quantum Hall system, the
composite fermion (CF) picture [1] not only serves as an
illuminating way of understanding Laughlin’s incompress-
ible quantum liquid for the odd-fraction Landau level fill-
ing, n, but also poses an interesting question of what is the
nature at even fractions, which is the accumulation point of
the fractional quantization. A seminal paper by Halperin,
Lee, and Read [2] suggested that the system at n � 1�2
should be a Fermi liquid of CF’s in the mean-field pic-
ture, which led to intensive studies. In contrast to the in-
compressible quantum Hall state or superconductors where
energy gaps arise from many-body effects, we have to
question here how the gap vanishes (i.e., how the liquid
becomes compressible) despite the presence of the elec-
tron correlation.

Naively a CF, composed of an electron and an even
number (f̃ � 2, 4, . . .) of flux quanta, feels the mean mag-
netic field Beff � �n21 2 f̃�f0r, where B � n21f0r

is the external magnetic field, r is the number density
of electrons, and f0 � 2p�e is the flux quantum (in
units in which c � 1 and h̄ � 1). Thus Beff vanishes
for n � 1�f̃. There is, however, no guarantee that the
mean field should be good, and the above argument
does not, in fact, say anything as to where the electron-
electron repulsion comes in. Recent developments [3–5]
have indicated that we can define a “dipole” (composite
particle 1 a correlation hole), where the flux attachment
is thought to mimic the repulsive correlation of electrons.
The Halperin-Lee-Read prediction on n � 1�2 has been
reexamined in the dipole picture, and the compressible
nature is reproduced [6].

These approaches still adopt mean-field treatments, and
their validity has yet to be fully clarified. The difficulty
arises because fluctuations of the Chern-Simons gauge
field that implements the flux attachment should be sig-
nificant. The fluctuations, in fact, determine the residual
interaction between CF’s as well as the effective mass,
m�, of a CF, which are difficult to evaluate analytically.
Hence exact numerical studies for finite systems are valu-
able. Rezayi and Read [7] have numerically shown that the
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ground state for the n � 1�2 system on a sphere has the
same angular momentum as expected from Hund’s second
rule for the same number of fermions in B � 0. Morf and
d’Ambrumenil [8] have estimated m� from the size scal-
ing of the ground-state energy. However, we are still some
way from understanding to what extent the CF picture
applies.

One direct way going beyond the ground state is to look
at the low-lying excitation spectrum—here we question
whether or not there is a one-to-one correspondence, in the
structure of the excitation spectrum, between the n � 1�2
liquid and a free fermion system in B � 0. This can also
enable us to extract, through the size scaling of the energy
gap, the effective mass. This is exactly the motivation of
the present work.

There are two points we wish to make: (i) How to per-
form the size scaling is always a subtle problem, especially
so when detecting the excitation gap that may vanish in the
thermodynamic limit. (ii) Some analytic studies [2,9] have
indicated that the nature of the n � 1�2 liquid is affected
by the range of the electron-electron interaction. So we
have taken a specific scaling sequence, and also varied the
range in monitoring the excitation spectrum.

We shall show that (i) we do have a striking one-to-one
correspondence between the interacting and free systems.
The shell structure in the spectrum is deformed with the
range of the interaction, which is interpreted here in terms
of the single-mode approximation (SMA). (ii) The ef-
fective mass becomes heavier as n is decreased as n �
1�2 ! 1�4 ! 1�6, where the increase in m� is somewhat
slower than the Hartree-Fock (HF) prediction of m�

HF ~

1�n2.
We adopt the edge-free spherical system following Hal-

dane [10,11], which has an extra virtue that the full rota-
tional symmetry can be exploited in classifying the states.
Dirac’s quantization condition dictates that the total flux
4pR2B be an integral (2S) multiple of the flux quan-
tum, where R is the radius of the sphere. The eigen-
value of the noninteracting part of the Hamiltonian is
´ � �l�l 1 1� 2 S2���2mR2�, where l ($S) is an integer.
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The lowest Landau level (LLL) corresponds to l � S with
the Landau level filling given by n � �N 2 1��2S for N
electrons. The electron-electron interaction, which is the
whole Hamiltonian if only the LLL is considered, is given,
up to a constant, as

H �
e2

2�
p

S

2SX
J�0

JX
M�2J

VJd
y
JMdJM . (1)

Here � � 1�
p

eB is the magnetic length, d
y
JM �P

m1,m2
�Sm1; Sm2jJM�cy

m1
cy

m2
where cy

m�cm creates or
annihilates the mth orbit (2S # m # S) with � j1m1;
j2m2jJM� being the Clebsch-Gordan coefficient, and the
interaction matrix element is Haldane’s LLL projected
pseudopotential with VJ � 2� 4S22J

2S2J � � 4S12J12
2S1J11 ��� 4S12

2S11 �2

for the Coulombic interaction.
For later reference let us look at the spectrum for free

fermions in zero magnetic field, which is the mean-field
solution for CF’s at n � 1�2. The energy of a free fermion
on a sphere is readily given by ´ � l�l 1 1���2m�R2�,
where l is the angular momentum and m� the fermion’s
mass. We have to note that, with each level being
�2l 1 1�-fold degenerate, a “closed shell” configuration
is realized when N � �lF 1 1�2 [Fig. 1(a)]. Here lF

(� 1, 2, 3, . . . for N � 4, 9, 16, . . .) is the highest occupied
l, so that we may call this the Fermi angular momentum in
analogy with the Fermi momentum in the planar system.

When N fi �lF 1 1�2, the ground state of the non-
interacting system is thus degenerate, or has an “open
shell.” For interacting particles the degeneracy is lifted,
and the total angular momentum of the ground state be-
comes nonzero [7]. Since this can obscure the scaling, a
straightforward way is to concentrate on the closed-shell
sequence satisfying N � �lF 1 1�2 � 4, 9, 16, . . . . For
this sequence the total angular momentum of the ground
state remains zero, and provides a natural sequence toward
the infinite system for establishing both the structure of the
low-lying excitation spectrum and the energy gap.

The simplest class of excitations from a closed shell
is “single-exciton” excitations where a particle is ejected
from the lF th shell to the �lF 1 1�th, as has been pointed
out by Rezayi and Read [7]. The exciton’s angular mo-
mentum takes the values L � 1, . . . , 2lF 1 1. These exci-
tations (abbreviated here as �lF� ! �lF 1 1�) provide the
lowest-lying branch for 1 # L # 2lF 1 1.

FIG. 1. (a) A closed-shell ground state of the N � 16 free
system. Solid (open) circles represent occupied (empty) states.
(b) An example of multiexciton excitations (�lF 2 1� �lF�2 !
�lF 1 1�3 here).
We can generalize this, including multiple excitons, to
obtain the whole picture. For 2lF 1 1 , L # 4lF , the
lowest-lying excitations are �lF�2 ! �lF 1 1�2, i.e., two-
exciton excitations. For 4lF , L # 6lF 2 3 for N $ 9
�lF�3 ! �lF 1 1�3 and so on, where n-exciton excitations
�lF�n ! �lF 1 1�n exist for L # n �2lF 1 2 2 n�. Over-
all, however, the lowest-lying states for L & 6lF are one,
two, and three excitons, whose energies D´ form steps
moving up at LMAX 	 2lF , 4lF , 6lF , respectively, as indi-
cated (�) in Fig. 2 for N � 16, although there are finite-
size corrections in LMAX � 2lF 1 1, 4lF , 6lF 2 3 as we
have mentioned.

Having looked at the free case, we now come to the
structure of low-lying excitations in the interacting sys-
tem. The exact low-lying energies are obtained by diago-
nalizing the Hamiltonian matrix. For n � 1�2 we have
2S � 2�N 2 1�, and the dimension of the Hamiltonian is
4 669 367 in the Lz � 0 subspace for N � 16 electrons.
The Lanczos diagonalization method with a parallel pro-
cessing is employed. If we explore the spectra for N � 16
(Fig. 2) and its evolution from N � 4 (not shown) and
N � 9 (Fig. 5 below), we are led to a well-defined se-
ries of cusps in the excitation spectrum, whose positions
exactly agree with the predicted positions for the free fer-
mions at LMAX 	 2lF , 4lF , 6lF , etc. [12]. The degenera-
cies (flatness of the steps) in the latter case are naturally
lifted due to the interaction between CF’s, but the effect
of interaction turns out to be weak enough to preserve
the shell structure, which remarkably persists up to the
angular momentum as large as 30. This is the first key
finding in this Letter. For L $ 6lF 2 2, complicated ex-
citations such as �lF 2 1�m�lF�n ! �lF 1 1�m0�lF 1 2�n0

(m 1 n � m0 1 n0) become the lowest excitation of the
free system, which continues to agree with the numerical
result.

We can next evaluate the energy gap, D. In the free
fermion system, the lowest excitation corresponds to
�lF� ! �lF 1 1� with D � �lF 1 1���m�R2�. This quan-
tity has a well-defined scaling, D � �4pr�m�� �

p
N�

�N 2 1�� when N is varied with r fixed. For the

FIG. 2. Low-lying excitation spectrum for N � 16 (solid
circles). The dashed line is a guide for the eye, while the
full curve represents ~ L�L 1 1�. The low-lying excitation
spectrum D´ for free fermions is also shown (�).
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interacting system, the cusped structure revealed here en-
ables us to identify the position of the lowest excited state,
which always occurs as the first cusp at L � 2lF 1 1
(the high-L end of the single-exciton excitation). Figure 3
shows this gap for n � 1�2 [13]. We can immediately
see a surprisingly accurate linear scaling that extrapo-
lates to zero for N ! ` if we take

p
N��N 2 1� as the

scaling variable, as guided by the free-system behavior,
D � �4pr�m�� �

p
N��N 2 1��.

This same formula can be used to extract the effective
mass m� of CF’s from the gradient of the scaling plot,
with the result 1�m� � �0.185 6 0.002�e2�. The 1�m�

obtained here from the excitation gap is slightly smaller
than 1�m� 	 �0.2 6 0.02�e2�, estimated from the ground-
state energy per particle [8]. On the other hand, the present
value is slightly larger than the analytic estimate, 1�m� 	
e2��6, obtained from the interaction energy between an
electron and a correlation hole in the first-quantized picture
[5] or the self-energy of the CF in the temporal gauge in
the HF approximation [14].

The effect of the gauge fluctuations can be probed by
how the gap and mass depend on the number of flux
quanta attached (f̃), so we further obtained the scaling plot
for the sequence n � 1�f̃ � 1�2, 1�4, 1�6 in Fig. 3 [15].
The gap again vanishes linearly for N ! ` (Fig. 3), where
the effective mass systematically becomes heavier with f̃

as shown in Fig. 4 for N � 9. In the HF approximation
for the CF we can show [16] that m� should scale as

1

m�
HF�f̃�

�
1
6

µ
2

f̃

∂2 e2

p
4pr

. (2)

This is a decreasing function of f̃ as well, but the present
numerical result is seen to deviate from the HF result (inset
of Fig. 4) for larger f̃ [17].

FIG. 3. Size scaling of the gap for n � 1�2, 1�4, 1�6. The
dashed lines are linear fit to the data.
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Now let us look more closely at the excitation spectra.
Note in passing that the overall shape of the spectrum
exhibits an ~ L2 asymptote as evident from Fig. 2. We
can explain this by converting the Hamiltonian in the
cycycc form to cyccyc. We have then, up to a con-
stant, e2��2�

p
S�

P2S
K�1 ṼKrK ? rK where rK ? rK �P

�21�MrKMrK ,2M and rKM �
P

�2�S1m2 �Sm1; Sm2j
KM�cy

m1
c2m2 . The transformed coefficient becomes ṼK �P2S

J�0�21�2S1J �2J 1 1� 
SSJ
SSK �VJ , where 
SSJ

SSK � is Wigner’s
6j symbol. In this representation, r1M is nothing but the
(LLL projected) total angular momentum operator, so
the leading term becomes r1 ? r1 � �3�S�S 1 1� �2S 1

1��L̂ ? L̂, which explains the asymptote ~ L�L 1 1�.
Now we come to what happens when the range of inter-

action is changed. We have calculated the excitation spec-
tra replacing the pseudopotential V2S2m with �V2S2m�a.
Since V2S2m is the potential between two electrons with
the relative angular momentum m, a , 1 �a . 1� cor-
responds to the interaction longer (shorter) ranged than
Coulombic.

The numerical result in Fig. 5 [12] shows that the cusped
structure in the spectra becomes more pronounced (i.e.,
effect of the inter-CF interaction becomes enhanced) as
the interaction is made shorter ranged, although the posi-
tions of cusps remain the same. So the free CF picture
seems to be better for longer-ranged interaction. This is in
sharp contrast with the Laughlin’s liquid at odd denomi-
nators for which the mean-field CF picture yields even
an exact ground state when the interaction is short ranged
enough. The cusps sticking to 2lF , 4lF , . . . remind us of the
Tomonaga-Luttinger (TL) liquid, a totally different system
in one dimension, where the cusps, having a topological
origin, do not change with the form of interaction, either.

The tendency that the system lies farther away from the
Fermi liquid for shorter-ranged interactions is consistent
with analytic studies. Namely, an improved random-
phase approximation [2] and a renormalization group
study [9] suggest that for short-ranged potentials the one-
particle Green’s function has a branch cut rather than a
pole just as in the TL liquid. For a longer-ranged case the

FIG. 4. D (~ 1�m�) versus n � 1�f̃ � 1�2, 1�4, 1�6 for
N � 9. The dashes lines represent the HF result, with the inset
depicting m�

HF�m�.
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FIG. 5. Full excitation spectra for n � 1�2 with �V2S2m�a

(a � 0.5, 1.0, 2.0) for N � 9 (lF � 2). The energy is normal-
ized by the gap at L � 2lF 1 1�� 5� for each value of a. The
SMA result is also shown (�).

Fermi-liquid properties are recovered. To test these
predictions from numerical low-lying spectra will require
further investigations, including correlation function
studies. However, we can compare the behavior of the
lowest cusp (i.e., single-exciton branch) with the SMA,
where the rLM defined above operated on the ground state
jC0� is used as the trial function in evaluating the en-
ergy, �C0jr

y
LM�H 2 E0�rLM jC0���C0jr

y
LMrLM jC0� �

f�L��s�L�. The SMA result (� in Fig. 5) roughly repro-
duces the gradient of the branch, although we encounter
a deviation larger than those in the odd-fraction liquids.
We can numerically show that the structure factor s�L�
remains almost identical as the interaction range is varied,
so the change in the oscillator strength f�L� is dominating
the shape of the cusp.

To summarize, the present numerical result, done on the
largest scale currently available, has enabled us to show
that the gauge fluctuations in the even-fraction metals are
substantial, but not so strong as to destroy the shell struc-
ture in the low-lying excitation spectrum. We are also ex-
tending the present study to the spin degrees of freedom,
which will be published elsewhere.
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