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Suppression of Ground-State Magnetization in Finite-Size Systems
due to Off-Diagonal Interaction Fluctuations
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We study a generic model of interacting fermions in a finite-size disordered system. We show that
the off-diagonal interaction matrix elements induce density of state fluctuations which generically favor
a minimum spin ground state at large interaction amplitude, U. This effect competes with the exchange
effect which favors large magnetization at large U, and it suppresses this exchange magnetization in a
large parameter range. When off-diagonal fluctuations dominate, the model predicts a spin gap which
is larger for odd-spin ground states as for even spin, suggesting a simple experimental signature of this
off-diagonal effect in Coulomb blockade transport measurements.

PACS numbers: 73.23.–b, 71.10.–w, 71.24.+q, 75.10.Lp
Ferromagnetic instabilities result from the combined ef-
fect of the electronic interactions together with the Pauli
principle. The interaction energy can be minimized when
the fermionic antisymmetry requirement is satisfied by the
spatial wave function leading to the alignment of spins
and a large ground-state spin magnetization (a familiar ex-
ample of this is Hund’s rule in atoms). In contrast when the
interaction is weak minimal spin is favored because it costs
kinetic energy to flip a spin as it must then be promoted
to a higher energy level. When treating ferromagnetism
in metals, because of the locality of the Pauli principle,
magnetic instabilities are usually studied in the framework
of the Hubbard model taking only the short-range part of
electronic interactions into account, so that only pairs of
electrons of opposite spin interact. As the magnetization
increases the number of interacting pairs decreases and the
system spontaneously magnetizes for sufficiently strong
interactions. In a finite-size system this Stoner instability
[1] occurs when the typical exchange interaction between
two states close to the Fermi energy is equal to the one-
particle level spacing which for a clean system with Hub-
bard interaction gives Uc � D.

There has been much recent interest in the Stoner insta-
bility of finite-size disordered metals such as quantum dots
and metallic nanoparticles [2]. Building on earlier pertur-
bative work [3] Andreev and Kamenev [4] recently found
a significant reduction of the Stoner threshold in disor-
dered systems due to spatial correlations in diffusive wave
functions which enhance the average exchange term. More
recently, Brouwer et al. [5] considered the effect of meso-
scopic wave function fluctuations and found an associated
increase of the probability of nonzero ground-state spin
magnetization below the Stoner threshold. Within a simi-
lar model, Baranger et al. [6] proposed that spontaneous
magnetization effects could explain kinks in the field de-
pendence of Coulomb blockade resonances. The purpose
of the present paper is to point out a competing effect of in-
teractions which suppresses the probability of ground-state
magnetization and has not been treated in any of the previ-
ous works on itinerant magnetism of disordered systems.
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The mean-field treatments leading to an exchange term
in the effective Hamiltonian for disordered metals neglect
the effects of off-diagonal interaction matrix elements [4],
however, it is well known from studies of nuclei and atoms
[7] that the bandwidth of the many-body density of states
in finite interacting Fermi systems is actually determined
by the fluctuations of these off-diagonal matrix elements.
When one introduces the spin degree of freedom into these
models we shall see below that one immediately finds that
these fluctuations are largest for the states of minimal spin.
This effect then strongly increases the probability that the
extremal (low-lying) states in the band are those of mini-
mal spin, and opposes the exchange effect. We expect this
effect to be significant in quantum dots and to suppress the
possibility of high spin ground states.

We start from the Hamiltonian for n spin-1�2 particles,

H �
X

eacy
a,sca,s 1

X
U

g,d
a,bcy

a,sc
y
b,s0cd,s0cg,s , (1)

where s�0� �", # are spin indices. The m�2 different one-
body energies are distributed as ea [ �2m�2; m�2� so as
to fix D � 1 with spin degeneracy. The interaction com-
mutes with the z component sz of the total magnetization
s so that the Hamiltonian acquires a block structure where
blocks are labeled by sz and, due to spin rotational sym-
metry (SRS), subblocks of given s $ jszj appear within
each of these blocks. Each block’s size is given in terms
of binomial coefficients as N�sz� � � m�2

n�22oz
� � m�2

n�21oz
�.

The Hamiltonian (1) can be viewed as a generic model
of interacting fermions expressed in the basis of Slater
determinants constructed from the eigenstates ca of the
corresponding free fermion model H0 �

P
eacy

a,sca,s.
In this basis the interaction matrix elements are given
by U

g,d
a,b �

R
d �r d �r 0U��r 2 �r 0�c�

a��r�c�
b� �r 0�cg��r�cd� �r 0�,

where U��r 2 �r 0� is the interaction potential. Because of
disorder or chaotic boundary scattering the wave functions
ca have a random character leading to fluctuations in
U

g,d
a,b around their average value. We take these fluc-

tuations to be random with a zero-centered Gaussian
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distribution of width U. This gives a contribution H̄
similar to the second term in the right-hand side of (1)

with a distribution P�Ug,d
a,b� ~ e2�Ug,d

a,b �2�2U2
of interaction

matrix elements. Only diagonal matrix elements U
a,b
a,b

and U
b,a
a,b have a nonzero average leading to mean-field

charge-charge and spin-spin diagonal interactions [4].
We neglect the charge-charge contribution as it has no
influence on the magnetization and this leaves us with the
following effective Hamiltonian:

H � H0 1 H̄ 2 lU
X

�sa �sb , (2)

where �sa �
P

s,t cy
a,s �ss,tca,t are spin operators and the

ferromagnetic spin-spin interaction has a strength lU . 0.
Without it (l � 0), the Hamiltonian (2) within each spin
block is precisely the two-body random interaction model
(TBRIM) introduced in nuclear physics [8], and used to
study thermalization [9] and the emergence of quantum
chaos in few-body systems [10] and statistical features ob-
served in shell model calculations [11,12]. A similar model
has been shown recently to be consistent with the observed
Gaussian distribution of peak spacings in Coulomb block-
ade resonances through quantum dots [13]. One key fea-
ture of the TBRIM is that the many-body density of states
(MBDOS) has an approximately Gaussian shape with a
variance proportional to the connectivity K , i.e., the num-
ber of nonzero matrix elements in each row [8]. Similarly
we can estimate the variance of the MBDOS of the Ham-
iltonian (2) for fixed �s, sz� and U�D ¿ 1 as

1
N�sz�

X
I ,J

H̄2
I ,Jd�s�I�

z 2 sz�d�s�I� 2 s� � KU2, (3)

where H̄I ,J � �IjH̄jJ	 and jI	 refers to a Slater deter-
minant. Hence each block’s bandwidth goes as

p
K U

with a sz-dependent connectivity which can be ex-
pressed as K�n, m, sz� � 1 1 C�n�2 1 sz , m�2� 1

C�n�2 2 sz , m�2� 1 1�2��n�2�2 2 s2
z � ��m�2 2

n�2�2 2 s2
z � in terms of the function C�n, m� �

n�m 2 n� 1 n�n 2 1� �m 2 n� �m 2 n 2 1��4. The
factor 1�2 in front of the last contribution to K is needed
to take into account the effect of SRS. In the dilute
limit approximately half of the spin-flip transitions which
conserve sz are not allowed because they do not conserve
total spin (e.g., change a singlet to triplet). The estimate
(3) assumes that each matrix element has the same vari-
ance, which for a generic off-diagonal element is 
U2.
However, it is easily seen that diagonal matrix elements
H̄I ,I have an enhanced variance 
�3n2�4 1 s2

z �2U2

which induces deviations from (3) for large filling and
large magnetization. Nevertheless, these matrix elements
can be neglected in the dilute and weakly magnetized
limit 1 ø n�2 1 sz ø m where the larger number
of off-diagonal matrix elements dominates the variance
when �m 2 n�2 ¿ �3n2�4 1 s2

z �. In the right inset of
Fig. 1 we show plots of K�n, m, sz� for different filling
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FIG. 1. Density of states for the Hamiltonian H̄ with n � 6
particles and m � 16 orbitals, corresponding to the magnetiza-
tion blocks sz � 23 (solid line), 22 (dotted line), 21 (dashed
line), and 0 (dot-dashed line). Left inset: rescaled density of
states showing the approximate scaling in E�K1�2U. Right in-
set: normalized connectivity K�sz��K�0� vs magnetization for
filling factors n � 1�10 (solid line), 3�8 (dashed line), and 1�2
(dot-dashed line). We compare this estimate to the true variance
for n � 3�8 obtained numerically from the data of the main
figure (diamonds).

factors n � n�m as well as a comparison with the true
variance of the MBDOS for n � 3�8. Deviations from
the estimate (3) are small, even at this rather large filling
and increase with increasing magnetization in agreement
with the above reasoning. Moreover in the left inset of
Fig. 1 we show that the full MBDOS follows the scaling
(3) with significant deviations only at large magnetization,
so that it is plausible that this scaling also determines the
tails in which the ground-state energies will be found.

Our essential finding follows from the simple features of
the model already stated. The full MBDOS is a sum of ap-
proximately Gaussian contributions from each spin block
with a variance proportional to the corresponding connec-
tivity. The latter is a monotonously decreasing function of
sz . Hence the broadest MBDOS corresponds to the mini-
mally magnetized block and the ground state will be found
in this block with increased probability [14]. Assuming, as
just discussed, that the tails of the distribution scale with
the variance with a factor b and neglecting contributions
arising from H0, the typical spin gap can be estimated (for
l � 0) as

DU
s � bU�

q
K�jsminj� 2

q
K�jsminj 1 1�� . (4)

This multiple Gaussian structure of the MBDOS and the
scaling with

p
K obtained from numerical calculations are

shown in Fig. 1 for l � 0. For l fi 0, the spin-spin in-
teraction induces relative shifts of each block’s MBDOS
which eventually will shift the finite spin blocks suffi-
ciently to overcome the larger fluctuations of the minimal
spin MBDOS. This is the competition between exchange
3939
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and off-diagonal fluctuations already mentioned. However
for reasonable values of l the off-diagonal fluctuations
strongly reduce the probability of exchange-induced mag-
netization (see Fig. 3).

In Fig. 2 we show the computed spin gap DU
s between

the minimally magnetized ground state and the first spin
excited level for l � 0 in the limit of dominant interaction,
i.e., neglecting H0 in (1). One of the main features is a
strong even-odd effect which is reminiscent of a similar
behavior in the limit of vanishing interactions. However,
the origin here is the fluctuating interaction and the energy
differences scale as U instead of D. We next note that the
gap first increases with an increasing number of particles
before it seems to stabilize above n � 6. We have checked
(dashed and dot-dashed lines in Fig. 2) that this behavior,
which is not captured by the dilute estimate (4), is partly
due to the neglect in (3) of nongeneric matrix elements
with enhanced variance mentioned above. However, even
though the exact variance gives a much better estimate,
it still underestimates the gap at larger n, and we have
numerically determined that this is due to a strong positive
correlation of the ground-state energies in adjoining spin
blocks (
0.9). Such correlations, although interesting, are
not suprising since the different block Hamiltonians are
not statistically independent (many of the same two-body
matrix elements appear in both).

We next switch to the mean-field spin-spin interaction
l . 0 which induces energy shifts of 2lUjszj �jszj 1

1� [14]. On average the spin gap becomes Ds � DU
s 2

l̄U, where l̄ � �5 2 �21�n�l�2, i.e., the relative shift
between the two lowest magnetized blocks is larger for
an odd number of particles. The variance of the gap dis-
tribution is unaffected and we can already conclude that
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FIG. 2. Dependence of the finite-size spin gap in the number n
of particles. Points correspond to numerical results for m � 10
(full circles), 12 (empty squares), 14 (full diamonds), and 16
(empty triangles), and the solid line to the dilute estimate (4)
with a numerical factor b � 1.5. For the case m � 16 and
1000 Hamiltonian realizations, the error bars indicate the rms of
the gap distribution while the dashed and dot-dashed lines show
the numerically computed variances [left-hand side of Eq. (3)]
for the full Hamiltonian and after setting to zero nongeneric
interaction matrix elements, respectively.
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the probability P�s . 0� of finding a magnetized ground
state is reduced by the off-diagonal matrix elements and
saturates above a finite value Uc, since the width of the
gap distribution is proportional to its average 
U. This is
shown in Fig. 3 where P�s . 0� is plotted against U�D

for different values of l. On the same graph we show
numerical results obtained after setting to zero the off-
diagonal matrix elements. The data unambiguously reflect
the strong demagnetizing influence of the off-diagonal ma-
trix elements.

The physically relevant value of l will depend on the
microscopic details of the system. Indeed l is given
by half the ratio of the mean exchange interaction with
the fluctuations of off-diagonal matrix elements [4] l �
�Ub,a

a,b 	�2 rms �Ug,d
a,b�. Semiconductor quantum dots with

poor screening and extended, chaotic single-particle wave
functions should have l � 1, while for extended diffusive
metallic systems we get a much larger spin-spin interac-
tion l 
 g, where g . 1 is the system’s conductance [3].
From Fig. 3, however, we see that, even in the regime of
dominating interactions, a nonmagnetized ground state is
more probable for l ø 5 (l̄U ø DU

s ).
We finally consider the influence of an external mag-

netic field which only introduces a Zeemann coupling.
This situation can be experimentally realized by applying
a magnetic field in the plane of a two-dimensional elec-
tron gas. This Zeemann term does not affect the Ham-
iltonian’s block structure, but only shifts each block’s
MBDOS by an amount gmBBsz . Because of the spin gap
discussed above, a finite magnetic field of average mag-
nitude �Bc	 � Ds�gmB is necessary to magnetize the sys-
tem. The even-odd effect emphasized in Fig. 2 results in
a critical field to flip one spin which is significantly larger
for a sz � 61�2 (odd) ground state as compared to a
sz � 0 (even) ground state. More generally the gap for
a lower spin state is smaller than that for the state of a
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FIG. 3. Probability for a magnetized ground state as a function
of U�D for 2000 realizations of Hamiltonian (2) with n � 5
and m � 10, l � 2, 4, 5, and 7 (full symbols, from bottom to
top). Empty symbols show the corresponding curves after setting
to zero the off-diagonal matrix elements. Stars correspond to
n � 5, m � 14, and l � 7.
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FIG. 4. Schematic of the conductance peaks in a 2D quantum
dot as a function of an in-plane magnetic field for m � 14,
l � 1 (left) and 2.5 (right), and U�D � 4 corresponding to
the addition of the n � 3, 4, . . . , 10 electrons (from bottom to
top). Dot-dashed lines indicate slopes of 6gmB�2. Larger
slopes for which spin-blockade effects strongly reduce the peak
height [15] are indicated by dashed segments. Note that, due
to the subtraction of the average charge-charge interaction, the
model does not reproduce the charging energy so that the vertical
distance between consecutive peaks is arbitrary.

higher spin (this follows from the right inset of Fig. 1).
This aspect of our theory can be tested experimentally by
studying the in-plane magnetic field dependence of the po-
sition of Coulomb blockade conductance peaks at very low
temperature T ø D. The resonant gate voltage is given
by a difference of two many-body ground-state energies
eVn

g � E0
n11 2 E0

n, and it is always the difference of an
even-odd pair. The peak position behaves like

eVn
g �B� � E0

n11 2 E0
n 1 gmBBdsz�n� , (5)

where dsz�n� is the magnetization difference between the
two consecutive ground states. Without magnetization
dsz�n� � �21�n�2 and one has j≠Vg�≠Bj � gmB�2. As
B is increased the ground state with an even number of
electrons is most likely to magnetize first, exactly revers-
ing the slope of two consecutive peaks; then as the field
increases further the odd state will likely flip, restoring the
original slope. As long as consecutive ground states never
differ by more than one unit of spin the absolute value of
the slope will remain constant as the system polarizes.

However, if there exist many magnetized ground states,
then one expects a range of slopes to occur. In this case the
corresponding peak heights will be strongly reduced by the
spin blockade mechanism (see dashed lines in Fig. 4) [15]
which should be easily visible experimentally. This argu-
ment neglects changes in the g factor of the electron with
changing n, which presumably are slow. The even-odd be-
havior of Ds is qualitatively similar to the noninteracting
case, however the scale in gmBB over which spin flips oc-
cur is determined by U and not D. Typically, this results
in an increase of the field necessary to achieve full polar-
ization on the dot. This is illustrated in Fig. 4 where the
peak positions are drawn as functions of the Zeemann cou-
pling for l � 1.5 and 3. It is clearly seen that, at small l,
j≠Vg�≠Bj is constant and corresponds to a minimal dsz,
while increasing l gives different slopes in agreement with
the above reasoning.
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