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In deep-inelastic collisions of 8 MeV /nucleon 7°Zn projectiles with 1*Pt, we have found an 8+ isomer
with Ty, = 23(1) ns at 4208 keV in ®Ni; the v gy, E2 effective charge was determined to be 1.5(1)e.
In ®Cu, a 19/2~ isomer with T;,, = 22(1) ns at 3691 keV was identified and its decay data were
calculated quite accurately by a parameter-free shell model calculation using empirical input parameters.
Proton 2p-1h excitation, fed by another Ty,, = 39(6) ns isomer at 3827 keV, induces large collectivity

in ®Cu.

PACS numbers: 23.20.—g, 21.60.Cs, 25.70.Lm, 27.50.+e

The neutron-rich nucleus $5Ni4 is known to have the
properties of doubly closed shells [1,2], and its core
excited states can provide valuable information on the
nuclear shell structure around this nucleus. This shell
structure is important as a base to extend the knowledge
of more neutron-rich nuclei towards another doubly magic
78Ni, which is also relevant to astrophysics. Until now,
however, only a few excited states, e.g., 0" at 1770 keV
[1], 2" at 2033 keV, and 5~ at 2847 keV [2], have been
identified, because in-beam spectroscopic techniques with
fusion reactions cannot be applied to such a neutron-rich
nucleus.

At the N = 40 shell closure in ®Ni, the vp;,, and
vgy,» orbitals lie below and above its Fermi surface, with
a smaller energy gap than those at other magic numbers.
Thus, the neutron core-excited states of the v gy /o v pl_/12 and
vgé/zypf/é configurationswill appear at low excitation en-
ergies. Among these excitations, the (vg5,,vp; 3)s+ State
isof particular interest. This state is expected to be an iso-
mer, and from its lifetime we can derive a v g9/, effective
charge, which is a measure of core polarizability. Further-
more, the levels descended from this isomer provide neu-
tron-neutron two-body residual interaction energies. On
the other hand, the neutron number 40 is known to lose
magicity at Z = 26 and 30 [3,4]. This N = 40 property
can be tested by the excited states in 59Cuy,, especially
by the proton two-particle one-hole (2p-14) excitation. In
the present study, we have found the (vg5/,vp;/3)s+ iso-
mer in ®Ni by deep-inelastic collisions. The vg3/, levels
and the vgq/, E2 effective charge in ®®Ni are discussed by
comparing with those for 7 g9/, in a valence mirror nu-
cleus 30Zrso. Using these experimental levels in %8Ni and
the v g9/, effective charge, we show that a shell model cal-
culation accurately predicts the experimental data obtained
from anew isomer of (7 p3/2vg5/,vp1 /3192 IN®Cu. We
discussthe collectivity of the proton 2 p-1h states observed
in 9°Cu.

Recently, experimental techniques for studying neu-
tron-rich nuclei near %¥Ni have made remarkable progress.
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Grzywacz et al. [5] found wsisomers around this nucleus
by identifying a mass and an atomic number of the nucleus
produced in projectile fragmentation. Franchoo et al. [6]
observed excited states in *~74Cu by B decay of nickel
isotopes separated from fission products using an isotope
separator with a laser ion source. Broda et al. [2,7] mea
sured in-beam y rays of % %Ni produced in heavy-ion
deep-indlastic collisions (DIC's) with a large array of y
detectors. We also succeeded [8,9] in measuring in-beam
vy rays from isomers, with Ty, = 1 ns, produced in
DIC's using an isomer-scope developed by ourselves [8].

In the present experiment, a %Pt foil, 4.3 mg/cm?
in thickness, was bombarded with a 0.1 particle-nA
70Zn beam of 566 MeV from the JAERI tandem booster
[10]. The y rays from isomers were measured with an
improved isomer-scope which detects projectile-like
fragments (PLF's) with AE-E telescopes. Four Si AE
detectors, each of diameter 20 mm and thickness 22 um,
were arranged symmetrically around the beam axis and
were placed in front of a S E detector of an annular
shape, 100 mm in outer diameter and 22 mm in inner
diameter; each AE detector was inclined at 28° to the
beam axis so that the PLF’s are incident on this detector
perpendicularly. Four Ge detectors, with 30% efficiency,
surrounded the periphery of the Si E detector to observe
the v rays from the stopped fragments; these Ge detectors
were placed in a cross geometry and each Ge detector
was adjacent to each AE detector. A tungsten block
shields these Ge detectors from the intense y radiation
from the target. Sorting the y emitters by atomic numbers
from the AE-E-y(-v) coincidence data, we have gresatly
improved the sensitivity to detect the y rays of interest.
Furthermore, as we will discuss below, this geometry
alows us to measure in-plane to out-of-plane ratios of y
rays emitted by PLF's.

Gammarray spectra of nickel and copper isotopes are
shown in Figs. 1(a) and 1(b). These spectra are obtained
not only by setting a window in the AE-E diagram but
also setting a tpr.p-, Window of 20-100 ns to reduce the
v rays from short-lived isomers and from backgrounds
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FIG. 1. (a) Avy-ray spectrum of Ni isotopes. Theray ener-

gies are depicted f&*Ni. (b) A y-ray spectrum of Cu isotopes.
The y-ray energies are depicted fodCu. (c) A y-y spectrum
in coincidence with the 1114-keV and 2033-ke\Mays in®Ni.
These three spectra were obtained from te-E-y(-y) co-
incidence data, by setting @ r-, window of 20—100 ns and
sorting by atomic numbers.

mainly induced by neutrons.
found y rays from new isomers if®Ni and ®Cu. The
isomer in®Ni at the excitation energy of 4208 keV de-
cays through a cascade of foyrrays of 209, 851, 1114,
and 2033 keV. Figure 1(c) showsyay spectrum in co-
incidence with the latter twe rays identified previously
[2]. This isomer also decays to the long-livéd isomer
[2] through several paths of transitions. Newy rays in
%Cu are found to be coincident with the low-lying known

transitions [8]. Two new isomers were identified at the
excitation energies of 3691 and 3827 keV. Decay curve

derived from therp k-, coincidence data are displayed in
Figs. 2(a) and 2(b) for some rays in%Ni and%°Cu, re-

spectively. The adopted half-life of the 4208 keV isomer in

%Niis 23(1) ns, and those of the 3691-keV and 3827-ke

isomers in®°Cu are 22(1) and 39(6) ns, respectively. The

decay schemes established by hecoincidence relation-

ships are shown in Fig. 3. The present results are summ

rized in these schemes, including theay intensities.
According to a simple picture of DIG, the angular mo-

mentum of the PLF is aligned perpendicular to the reac

tion plane defined by the beam axis and\& detector.
Thus, the anisotropies of rays from the PLFs can be

measured with the Ge detectors placed in and out of th
reaction plane [11]. For example, a stretched quadrupol

v ray has an anisotropy da¥(in)/W(out) > 1, while a
stretched dipole one ha@ (in)/W(out) < 1, where the
W(in) and W(out) are they-ray intensities measured at
in plane @ = 90°) and out of plane ¢ = 0°), respec-
tively. In the present setup, th&(in) was measured by
the Ge detector adjacent toAZE detector and thév (out)

was measured by the other two Ge detectors at both sid

In these spectra, we hav
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FIG. 2. Decay curves (a) for the 275-keV and 2033-keV
rays in%Ni, and (b) for the 209-keV and 614-key rays in
Cu.
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Although the anisotropies decrease with time of an or-
der of 10 ns, the anisotropies for the new isomer& i
and®Cu still remain and allow us to determine the multi-
polarities of they rays. The anisotropy of the 190-keV
v ray with a long lifetime, however, seems too large.
The details of this method will be described in another
paper.

On the basis of thesg-ray anisotropies, we have de-
fermined the spins of the excited statesiNi and ®°Cu
as shown in Fig. 3. For the rays of the 209-851-1114-
2033 keV cascade ii®Ni, we assigned their spin se-
guence a8t — 67 — 4" — 27 — 0*. This assignment
is consistent with the anisotropy result &1 = 2 for the
209-keVy ray. This spin sequence is also consistent with
the lifetime results; we have determined the 851-keV and
1114-keVy raystobeAl = 2, because no retardation was
observed in this cascade, as shown by the decay curve of
ghe 2033-keVy ray in Fig. 2(a). For the parity assignment
of the®Cu levels, we referred to the reaction data [12,13]
and thepB decay data [14]. We also took account of the
present lifetime data to distinguish between&ihand an

2 transition.

Let us now discuss the nuclear structuré®ii. If the
8", 6%, 4%, and2" states in*Ni had a purevg;,vp; )5
gpnfiguration, the level spacings between these states
Should be the same as those "fiNis,, because of the
presumable conservation of seniority [15]. In fact, in
valence mirror nuclejjZr and33Mo, these level spacings
are almost the same; 141, 371, and 891 keV *fr,
and 148, 330, and 773 keV fétMo [4]. In °Ni, their
apacings are 183, 448, and 970 keV [5]. Apparently, the
Spacing between the™ and 4" states in®Ni is much
wider than that in’’Ni, while the spacing between the
8" and 6" states is nearly the same. This fact suggests
that the4™ state in%Ni has a significant admixture of
other components, while thg* and 6% states have a
very purevgs ,vp; /5 configuration. In the’®Ni region,
the energy difference between thefs; and thevp, )

states is smaller than that between the analogous proton

of the in-plane Ge detector. Figure 4 shows the result§tates in théZr region; e(fspp) — €(pyyy) = 694 and
for the y rays in%Ni and ®Cu, together with those for 1745 keV in%Nis, [7] and 55 [4], respectively. Thus,
known 666N transitions. These results were obtainedthe (vg3/,vf5/3)s+ component contributes significantly to
from the data within the time range of r-, < 100 ns.  the4™ state in®®Ni and would lower this state.
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FIG. 3. Decay schemes of the isomers®iti and ®Cu. The relativey-ray intensities are depicted in italics. The experimental
levels in®Cu denoted byr»?» 2 are compared to the shell model calculation (see text); the calculated yrast levels are shown next

to the experimental ones.

As discussed above, tt8 and6™ states in®®Ni have
a pure configuration of two neutrons in thegy,, orbital.
Therefore, we can derive thegy,, E2 effective charge
for the ®Niss core from theB(E2;8" — 6™) value in
%Ni. From the partial half-life of the 209-keVy ray, the
B(E2;8" — 6™) value is determined a&5(4) ¢ fm?*, cor-
responding tae.s;/e = 1.5(1). In this Letter, a radial ma-
trix element is evaluated b{r2) = (N + 3/2)A'/3 fm?,

studies of®Co would give a clue to their configurations.
Let us turn to the discussion 8tCu. The levels denoted

by 7v?» 2% in Fig. 3 are considered to have main configu-

rations of 7 p32vg5,,vp1 /5 by a shell model calculation

discussed below. Our previous Letter on t8¢2~ isomer

in 7'Cu [9] showed that the observed levels’iCu were

calculated accurately by a shell model with thes» vgg/z

model space, using experimental energy levels as two-body

derived from a harmonic oscillator potential. For the anal+esidual interactions. A similar three-particle calculation
ogous core ohsSr, effective charges are calculated to becan be applied to the decay of the/2~ isomer in®Cu

ecif(mg9/2) = 2.0e (epo1 = 1.0€) andeeff(l/gg_/lz) =2.1e
from the B(E2;8" — 6™) values in°Zr and %¢Sr, re-

by taking the core to b&Ni instead of*®Ni. The relative
residual interactions dfvg§/2)0+,2+,4+,6+,g+ are taken from

spectively [4]. Compared with these values, the effectivéhe levels in%Ni. Those of (7 p3/2vg9/2)3-4-5- 6~ are

charge obtained from the preséfi data is of a reason-
able magnitude.

The other new states iffNi with spins of 77, 6,
and 5 can be formed by the neutrdrp-12 excita-

taken from the levels if®Cu obtained by thézn(z, *He)
reaction [16]; the 772, 950, 1350, and 716 keV levels are
assigned a8, 47, 57, and6, respectively, by the sys-
tematics of 7 v two-particle multiplets [9]. The excita-

tion of (Vgg/szS_/12)7—,6—’57_ These states lie above the tion energy of thel9/2~ state in%°Cu is calculated as

(Vgg/zvpf/lz)s— isomer by600—-1100 keV. This separation
is consistent with the energy difference betweemtyié/l2

and vpf/‘2 states. However, we also point out the possibil-

ity of proton 1p-1h excitations such aémgo/ f73)7-

3713(110) keV, using the gy, single particle energy in
7Ni [7] and the relevant six ground state masses [17]. Note
that no free parameters are used in the present calculation.
The calculated levels are illustrated on the right-hand side
in Fig. 3. The3/2~ ground level calculated within the

and [W(fs_/z,p3/z)7Tf7_/12]_6+,5+ for these states, because 7p;,vpf, model space is also shown. The excellent
these excitations may lie around at 4 MeV. Beta-decaygreement between calculation and experiment indicates
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' ! ' ] [4]. Furthermore, theAl = 2 spacings in this band are

o 3 he] e O~ e} —_O

_15F 25 I = 83 S E5&] close to those if’Zn; the2*-0" and4*-2" spacings in
5 gg © 3 707Zn are 885 and 902 keV, respectively [4]. Thus, we have
< 3 % w x éx 3 concluded that the states in the’7~! band have large
% Ll R gy v 7] collectivity as the two-valence-proton nuclelign. From
z | } % 3 . N this point of view, ther27~! band may be represented as
2 050 2 { “ca ] 775X °Zn.

r S REEEY 8% * PNi, Ni The 3827-keV isomer if°Cu can be assigned as

0 5(‘)0 000 300000 the (7rp3/27-rg9/2177-f7’/£)17/2+ state, decaying to the

v -RAY ENERGY (keV) (mp3pmfspmfq132- state through the 614 keW 2

) . esn:  transition with 0.3(1) W.u. However, this assignment
FIG. 4. In-plane to out-of-plane ratios for the rays in°Ni . L .
and “Cu. Those for they rays in %Ni are also shown; results in the 1086-ke\y ray as anE2 transition with
1017 keV 9/2+ — 5/27), 356 keV [57) — (47)], 1425 keV large hindrance. This hindrance would suggest that this
[(4%) — 2*], and 1760 keV Z* — 07) [7]. isomer has a different shape from th8/2" state at
2741 keV. Further theoretical and experimental study is

that the input parameters taken from the level energie@duired for understanding the structure of this isomer.
well absorb the effect of the configuration mixing which '6’; conclusion, we have found titegs , » py3)s- isomer
cannot be treated within the small model space. Thd Niby deep-inelastic collisions and determined Hie
B(E2;19/27 — 15/27) value in69Cu, 63(3) e2fm*, can effective charge for thgy/, neutrons. Using the energy
present work ande — 20e Of an assumed value, this Shown that a shell model calculation predlcts the decay

shell model calculation givess ¢2fm?, in good agree- data of the(m ps/2vg5/,vpi )19/ isomer in®Cu with

ment with the experiment. excellent accuracy. The prot@p-1h excitation induces
The 19/2" level in ®Cu is lower than the&* level in  large collectivity in®Cu.

68Ni by 517 keV. This downward shift originates from the ~ Note added. —Brodaet al. [20] also found thel9/2™

difference between therps/2vge, and thempsvpi,  iSOMer decay i”Cu independently; their data are similar

interaction energies. The/2~ level relates to the former !0 ours.

interaction, while th& /2~ ground state relates to the latter.
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