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Condensation of Helium in Nanotube Bundles

M. W. Cole,1 Vincent H. Crespi,1 G. Stan,1 C. Ebner,2 Jacob M. Hartman,1 S. Moroni,3 and M. Boninsegni4
1Department of Physics, 104 Davey Laboratory, Penn State University, University Park, Pennsylvania 16802-6300

2Department of Physics, Ohio State University, 174 West 18th Avenue, Columbus, Ohio 43210
3INFM, Universita’ di Roma “La Sapienza,” Roma, Italy

4Department of Physics, San Diego State University, San Diego, California 92182
(Received 5 August 1999)

Helium atoms are strongly attracted to the interstitial channels within a bundle of carbon nanotubes.
The strong corrugation of the axial potential within a channel can produce a lattice gas system wherein
the weak mutual attraction between atoms in neighboring channels induces a transition to an anisotropic
condensed phase. At low temperatures, the specific heat of the adsorbate phase (with fewer than 2% of
the atoms) greatly exceeds that of the host.

PACS numbers: 64.70.Fx, 65.20.+w, 65.40.+g, 68.45.Da
While once of only academic interest [1,2], helium in
one-dimensional (1D) or quasi-one-dimensional systems
has received increased attention recently since the realiza-
tion that such systems can be created in the laboratory.
Helium is very strongly bound within the narrow intersti-
tial channels between tubes within the triangular lattice of
a bundle of carbon nanotubes [3–5]. Within such a chan-
nel, the transverse degrees of freedom are frozen out even
at relatively high temperatures of �30 K. The binding en-
ergy per atom, �370 K, is the highest known for He, over
twice as large as on the basal plane of graphite [6]. It ex-
ceeds the ground state binding energy of bulk liquid 4He
by nearly 50 times [7].

Here we describe how the He�nanotube-bundle system
can produce an experimental realization of a lattice gas
wherein the weak coupling between He atoms in neigh-
boring channels induces a finite-temperature transition into
a weakly bound anisotropic condensed state. This quali-
tatively new phase of He has strong 1D character, highly
localized He atoms, and kinetics dominated by atomic tun-
neling between lattice sites.

We assume that the He-He interaction is unaffected by
the substrate, an approximation that omits screening by
both phonons and electrons. On planar graphite, electro-
dynamic screening reduces the well depth of the He-He
pair potential by �10% [8]. The smaller He-C separation
in the interstitial channels should yield a somewhat larger
effect; its omission then implies a moderate overestimate
in the binding energies described below.

The external potential felt by a He atom in the intersti-
tial channel has a large corrugation. Modeling this inter-
action with a C-He pair potential [4], the band structure
of an isolated 4He atom within an interstitial channel of a
(18,0) [9] tube lattice yields a purely 1D dispersion with a
very large enhancement of the lowest-band effective mass:
m��m � 18, with a bandwidth of �0.18 K. The lowest
band has a binding energy of 370 K. Measured along the
channel’s central axis, the potential barrier for axial mo-
tion is �20 K. (This barrier acts in concert with the vari-
able transverse width of the potential; the effects of the
0031-9007�00�84(17)�3883(4)$15.00
corrugation are most directly revealed through m�.) For
a regular tube lattice, the interchannel tunneling is negli-
gible. Figure 1 shows ground state isoprobability surfaces
for 4He at k � 0 in the single-particle band structure. The
coupling between sites is sufficiently weak that single-
particle atomic tunneling dominates even at moderately
high temperatures. Because of the heterogeneity of cur-
rently accessible nanotube systems (i.e., mixtures of tubes
with different wrapping angles and diameters), this result
should be treated qualitatively, as a demonstration that the
states are well localized axially within the interstitial chan-
nel. Such a small bandwidth implies well-confined single-
particle wave functions which, in this particular geometry,
occupy a regular lattice with a separation of 4.2 Å between
sites. The bandwidth could be controlled by changing the

FIG. 1. Isoprobability surfaces for the k � 0 state in the low-
est band for helium within the interstitial channel of a lattice of
(18,0) nanotubes. The dimples arise from the three nanotubes
which bound the channel. The isosurfaces correspond to proba-
bility densities of 100, 1022, and 1024 Å23. The axial lattice
constant is 4.2 Å and a single unit cell (and single adsorption
site) is shown. The lowest-band states are well confined to dis-
tinct lattice sites.
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nanotube diameter [10] or through external pressure, pos-
sibly inducing a quantum phase transition. Note that this
single-particle calculation is consistent with recent experi-
mental results that the He binding energy in tube bundles
can exceed that for a flat graphitic substrate [5].

For this lattice of localized He sites, the natural descrip-
tion is a lattice gas model (in contact with an external reser-
voir of particles) wherein the relevant degrees of freedom
are the site occupations, 0 or 1 [11]. The intersite hop-
ping energy (i.e., �0.1 K) is significantly lower than the
potential energy of interaction between atoms on neighbor-
ing sites in a channel (�0.5 K), suggesting that the lattice
gas model is appropriate to a lowest approximation. For
other configurations of nanotubes which have larger inter-
site separations, the ratio of the hopping energy (which
drops exponentially with separation) to the potential en-
ergy of interaction (which drops as a power law) is likely
to be even smaller. Multiple occupancy is excluded by the
hard-core repulsive interaction between atoms (estimated
to impose an energetic cost of �50 K). Intrasite excita-
tions also involve high energy scales (�50 K), which are
irrelevant at low T. A preliminary description of the phase
behavior can be obtained from results previously obtained
[12,13] for an anisotropic simple cubic Ising model with
an interaction strength Jz between neighboring spins along
the z axis (i.e., within the same channel) and a transverse
interaction Jt � cJz . For the He-nanotube system, c is
very small. When c , 0.1, the transition temperature is
well approximated by the asymptotic formula [12,13]

Tc

Jz
�

2
ln�1�c� 2 ln�ln�1�c��

. (1)

Here we have Jz � jV �a�j�4, where V �a� is the equilib-
rium interatomic interaction at the intersite separation and
the factor of 1�4 arises from the familiar transformation
from the Ising model to the lattice gas. For He with an
intrachannel site spacing of a � 4.2 Å, Jz � 0.5 K. As
the present lattice is honeycomb rather than simple cubic
and as second neighbors are not included in Eq. (1), the
transverse interaction strength Jt should be renormal-
ized by roughly a factor of 3 3 3�4, which includes
a factor of �3 for the second neighbors in adjacent
channels and a factor of 3�4 for the reduced coordina-
tion of the lattice. This approximation is supported by
numerical calculations on the honeycomb lattice (see
below). For He with interchannel spacing d � 9.8 Å,
we obtain Jt � 7 mK, and c � 0.015. Equation (1) then
yields Tc � 0.7Jz . The transition temperature for con-
densation in this lattice-gas model is then Tc � 0.36 K,
somewhat below the ground-state binding energy of 2 K.
Reducing c by even a factor of 5 would change Tc by
less than 25%, illustrating the insensitivity of Tc to the
transverse interaction. Variation in Tc through changes
in jV �d�j will be minor so long as this lattice-gas model
remains valid.
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We obtain more detailed information from Metropolis
Monte Carlo canonical ensemble simulations of atomic
motion on the honeycomb lattice. The lattice measures
10 3 10 3 100 unit cells (10 3 10 in the plane of a
honeycomb) with two sites per cell. The highly elongated
cell accounts for the much longer-ranged correlations
along a bundle axis. We include interactions of an
atom with nearest neighbors within a channel and with
three neighbors in each of the three neighboring chan-
nels. At each temperature and coverage we compute
approximately 500 000 Monte Carlo steps per atom. The
heat capacity is obtained from the energy fluctuation
formula C � �DE�2�kT2 and checked by also computing
dE�dT . (The former is shown in Fig. 2.) We obtain
the temperature-coverage curve as a function of tem-
perature from grand canonical ensemble simulations of a
10 3 10 3 200 system using 5000 Monte Carlo steps per
site (50 000 steps near the critical point). Although this
system falls in the three-dimensional Ising model class,
the quasi-1D character manifests itself in the specific heat
above the transition. For small c, the specific heat above
the transition [13] closely follows the one-dimensional
result [2]:

C�T ��kBN �

∑
Jz

kBT
sech

µ
Jz

kBT

∂∏2

. (2)

The one-dimensional specific heat has a maximum of
0.44 near T�Jz � 0.83, slightly above the transition.
We take this temperature as a convenient reference point
for comparison to other systems. For d � 9.8 Å and
a � 4.2 Å, the resulting adsorbed particle density implies
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FIG. 2. The heat capacity per site at coverages of 0.2 (squares)
and 0.5 (circles) as functions of the temperature kBT�e, where
e � V �a� is the in-column nearest-neighbor coupling. Lines are
guides for the eye. The specific heat at the critical site coverage
diverges at Tc � 0.36 K and asymptotes to the one dimensional
specific heat (dashed curve) at high temperatures. The dash-
dotted line gives the coverage as a function of the transition
temperature, referring to the right-hand axis. The lowest (solid)
curve shows a theoretical result [14] for the specific heat of the
nanotube substrate (31000).
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a specific heat of �4 mJ�gK (normalized to the mass of
the carbon host) at T � 0.83Jz . This contribution to the
specific heat greatly exceeds the background specific heat
of the host material. For example, measurements on a
sample of single-walled carbon nanotubes yield a specific
heat of C � 0.2 mJ�gK at 1 K which is decreasing with
decreasing temperature [14]. The specific heat of graphite
is at least 3 orders of magnitude smaller in this temperature
range [15]. Note also that experimental measurements of
the specific heat of single-walled nanotube bundles signifi-
cantly exceed theoretical estimates for the contributions
from the nanotube substrate [14]; the low-energy degrees
of freedom of adsorbed gases might account for this
discrepancy.

In these He�nanotube-bundle systems, the lattice-gas
model describes a transition between high-temperature gas
and a low-temperature solid. The model predicts phase be-
havior topologically identical to that found in the familiar
isotropic case. Since the phase diagram has particle-hole
symmetry, the critical density has mean site occupancy of
1�2. The high-temperature limit is a random occupation of
the sites, while the low-temperature limit is a coexistence
of a dense phase of fully occupied sites and a vapor phase.
Just above Tc, the system has a large intrachannel correla-
tion length with 1D islands of densely occupied sites. At
Tc, the transverse correlation length diverges and neigh-
boring islands acquire long-range correlation. At densi-
ties other than 1�2 the system will undergo a first order
transition (at a density-dependent temperature) to a low-
temperature domain of coexistence between a dilute phase
and a dense phase.

How can one separate the effects of axial confinement
from the effects of the weak interchannel interactions in de-
termining the transition temperature of condensation? To
shed light on this question, we compare our results above
to an analogous system of interacting channels wherein
the intrachannel potential is smooth. Since the lattice-gas
model is not valid in this limit, we describe the He-He
interactions within a single channel within a diffusion
Monte Carlo calculation, treating the interchannel interac-
tion within the Hartree approximation. A previous analysis
of a single isolated channel [4,16] yielded a very weakly
bound state (�2 mK per atom) of remarkably low den-
sity (�0.04 Å21). Here we introduce the interchannel in-
teractions through a variational wave function which is a
product of identical states of density r in every interstitial
channel. The energy shift D due to the interchannel inter-
action between channels separated by distance d is

D � r
Z `

0
dx V �r 0� , (3)

where r 0 �
p

x2 1 d2. A straightforward numerical inte-
gration of (3), using the Aziz interatomic potential for He
[17] and including the three nearest and the six next-nearest
neighbor channels yields D�r � 20.228 K Å. Because
of the rapid decay of V with distance, inclusion of more
distant channels produces no appreciable change. Fig-
ure 3 shows how the interchannel interaction increases the
binding energy (2 ! 16 mK) and the equilibrium density
(0.035 ! 0.080 Å21) of the condensed state above that in
the single-channel picture. Classical statistical mechanics
implies a proportionality between the ground state cohe-
sive energy and the critical temperature of a given sys-
tem. Although this law of corresponding states fails for
quantum systems, a specific class of systems (i.e., a defi-
nite de Boer quantum parameter [18]), typically has a
strong correlation between the critical temperature and the
ground-state cohesive energy. For example, 4He in 3D has
a binding energy per particle of 7.17 K and a critical tem-
perature 5.2 K. In 2D, these values are 0.87 and 0.85 K,
respectively [19]. The smooth channel model should then
condense at �10 mK. The variational approximation un-
derestimates Tc, whereas the neglect of fluctuations in this
nearly one-dimensional system overestimates Tc. The de-
localized smooth channel approximation yields a much
lower transition temperature (�10 mK) than the localized
case (�0.3 K). This result then provides important insight
into the origin of the relatively high transition temperature
in the more realistic lattice-gas system: In the smooth
channel, the kinetic energy maintains a large (�15 Å) dis-
tance between He atoms within a channel, which reduces
their interaction energy by 30-fold. The corrugation in
the external axial potential forces a much smaller He-He
separation and thereby produces a much higher transition
temperature due to the larger intrachannel interaction [20].
Although the interchannel interaction is necessary to in-
duce the phase transition, the much stronger intrachannel
interaction, which determines the spacing of the localized
sites, sets the scale of Tc.

In experimentally produced nanotube bundles the
distribution of nanotube diameters is rather sharp, but
present evidence suggests a heterogeneous distribution of
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FIG. 3. Energy e per 4He atom in an isolated smooth 1D chan-
nel (solid line), compared to the energy per atom for a hexagonal
lattice of smooth channels at the same interchannel separation
as for a carbon nanotube bundle (dashed line).
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wrapping angles for the individual tubes. The consequent
variations in the binding and axial separation of adsorption
sites can strongly affect the critical phenomena near the
transition and the nature of the condensed phase [21],
but should cause comparatively minor variations in the
transition temperature of condensation. As Tc is linearly
proportional to Jz and only weakly dependent on Jt in this
regime, the main effect on Tc will arise from variations
in the intrachannel intersite separation. Should the spatial
extent of axial localization be substantially longer in some
bundle geometries, then double occupancy could become
important as well. Note that the excited-state properties of
these systems are also extremely interesting, as they repre-
sent highly correlated low-dimensional hard-core quantum
systems within either periodic or qausiperiodic external
potentials.

In summary, we demonstrate that He within the in-
terstitial channels of carbon nanotube bundles can con-
dense into an anisotropic phase wherein the strong axial
confinement induced by the external potential greatly en-
hances the density and, hence, the transition temperature
to the low-temperature solid. This qualitatively new phase
of He is distinguished by strong He localization, a pro-
nounced 1D character to thermodynamic quantities such
as the specific heat, and single-particle atomic tunneling
between sites. This contrasts sharply with the He�planar-
graphite system wherein the He single-particle bandwidth
is an order of magnitude higher [22]. At low temperatures
the specific heat of the helium absorbates, which com-
prise less than 2% atomic fraction of the He�nanotube-
bundle system, greatly exceeds that of the much stiffer
background material. This intriguing interstitial-channel
condensation should also be observable for other small
atoms, for example, H2 [23] and Ne [4]. Preferential ad-
sorption to the interstitial sites can be guaranteed by choos-
ing small adsorbates which energetically prefer the tighter
coordination of the interstitial channel over the interior of a
tube (or by simply using nanotubes with closed ends); ad-
sorption to the outer bundle surface must be treated sepa-
rately. For 3He, we expect the ordering behavior to be
similar to that of 4He, since atomic exchange is negli-
gibly small. This situation is reminiscent of the epitaxial
ordering transition of 3He and 4He on the graphite basal
plane. In that case, exchange is much higher than here, yet
transition temperatures of the isotopes differ by less than
1% [24,25].
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