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Mean-Field HP Model, Designability and Alpha-Helices in Protein Structures
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Analysis of the geometric properties of a mean-field HP model on a square lattice for protein structure
shows that structures with a large number of switchbacks between surface and core sites are chosen
favorably by peptides as unique ground states. Global comparison of model (binary) peptide sequences
with concatenated (binary) protein sequences listed in the Protein Data Bank and the Dali Domain
Dictionary indicates that the highest correlation occurs between model peptides choosing the favored
structures and those portions of protein sequences containing alpha helices.

PACS numbers: 87.10.+e, 87.15.By
The three-dimensional structure of proteins is a com-
plex physical and mathematical problem of prime impor-
tance in molecular biology, medicine, and pharmacology
[1]. It is believed that the folding instruction of a pro-
tein is encoded in its amino acid sequence [2] and from
model studies much has been learned about protein struc-
ture and folding kinetics [3–6]. Yet much still remains
to be understood. This simple fact is already intriguing:
the number of possible globular structures for a peptide of
typical length—about 300 amino acids—is practically in-
finite; the number of proteins whose structures are known
empirically or hypothetically is more than 100 000 and is
growing rapidly with time; the number of classes of na-
tive protein structures is about 500 and is believed unlikely
to exceed 1000 in the long run [1,7]. Numerical simula-
tions based on lattice models have shown that structures
of exceptionally high designability—those that attract a
large number of protein sequences to conform to it—do
exist [5,6,8]. Why such structures would emerge is, how-
ever, not well understood. Protein folding also has an out-
standing temporal feature: the initial collapse to globular
shape and the formation of a helices are completed in less
than 1027 sec [9], while the rest of the folding takes up to
10 sec to complete.

In this Letter, based on results from a mean-field lat-
tice model we observe that high-designability structures
are preponderant in a type of substructure that suggests a

helices in real proteins and we explain the reason behind
this phenomenon. This notion is supported by global com-
parisons of model peptides that fold into high-designability
structures with (binary) sequences constructed from nonre-
dundant sets of proteins in the Protein Data Bank (PDB)
[10] and the Dali Domain Dictionary (DDD) [7]. Since
the mean field in the model represents the hydrophobic
potential that is known to cause the initial collapse of a
peptide to a globular shape, the results may explain why
the initial collapse and the formation of a helices occur
essentially simultaneously and rapidly, and are temporally
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separated from other slower folding processes that are
driven by far-neighbor inter-residual interactions.

In the HP model of Dill et al. [3], the 20 kinds of amino
acids are divided into two types, hydrophobic and polar.
This reduces a peptide chain of length N to a binary “pep-
tide” p � �p1, p2, . . . , pN �, where pi � 0 (1) if the amino
acid at the ith position on the chain is polar (hydropho-
bic). A structure is represented by a self-avoiding path
compactly embedded on a lattice L , and the energy asso-
ciated with a peptide conforming to a particular structure is
computed from the contact energies between the nearest-
neighbor residues that are not adjacent along the peptide. A
set of well tested contact energies derived from proteins of
known structure is the Miyazawa-Jernigan matrix, which
is, however, well approximated by an effective mean-field
potential expressing the hydrophobicities of the residues
[11]. In the binary form of this approximation the Hamil-
tonian of the HP model is reduced to that of a mean-field
model [5,12],

H�p, s� � 2p ? s �
1
2

�js 2 pj2 2 p2 2 s2� , (1)

where s � �s1, s2, . . . , sN � is a binary “structure” con-
verted from a self-avoiding path with the assignment:
si � 1 (0) if the ith site is a core (surface) site on
the lattice. Empirical observation suggests that protein
folding proceeds in two steps, a first stage of fast collapse
and formation of alpha helices (and probably some not
properly folded beta sheets) presumably caused mainly
by hydrophobic interactions under polymeric constraints,
followed by a second stage of slow annealing caused by
far-neighbor inter-residue interactions leading to the final
native state [9,13]. Since Eq. (1) is a local, mean-field
approximation that leaves out residual—i.e., left over
from mean-field averaging—far-neighbor interactions, it
can be relied on to account for only the first stage.

We denote by S the set of all distinct structures s on
L and by P the set of all possible peptides p of length
© 2000 The American Physical Society



VOLUME 84, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 10 JANUARY 2000
N . For each p the selection of the s giving the minimum
H defines a mapping from P to S . There are p’s that
are mapped to more than one s or are mapped to s’s that
correspond to more than one self-avoiding path. Such p’s
are removed from P and their target s’s are removed from
the competition for high designability, because a peptide
that does not conform to a unique structure at all times is
not expected to survive the evolutionary selection process
[14,15]. It has also been shown that not admitting degen-
erate states in a coarse-grained model is similar to remov-
ing peptides that have low foldability in a finer-grained
model [16]. (Many states that are degenerate in the present
coarse-grained model would in a model with higher energy
resolution be states of different symmetries with nearly de-
generate energies. The energy landscape for the ground
state among these would likely contain deep local minima,
and a peptide choosing such a ground state would likely be
a poor folder.) The mapping then partitions what remains
in P into classes, with all the p’s in each class mapped
to a single s, whose designability is simply the number
of p’s in the class. For this mapping the right-hand side
of Eq. (1) reduces to being proportional to js 2 pj2, the
Hamming distance between the two points p and s in an
N-dimensional unit hypercube. Then the designability of
an s is essentially the Voronoi polytope around it in this
hypercube [12].

Excepting those peptides removed for degeneracy, P is
just the set of all the vertices on a unit hypercube. In
comparison, owing to the constraints of compactness and
self-avoidance imposed on paths on L , points in S are
sparsely distributed in the hypercube so that S , P . For
example, on a 6 3 6 square lattice, the number of elements
in (including those to be removed for degeneracies) P is
236 � 68 719 476 736, while those in S are 30 408 (but
only 18 213 of them have no path degeneracy). If the points
in S were uniformly distributed in the hypercube, then the
Voronoi polytope around each s would be the same and
every s would have the same designability. But owing to
boundary effects and geometric constraints imposed on the
compact paths on L , the distribution of s’s in S cannot
be uniform, those s’s residing in regions in the hypercube
that are of especially low density (in s’s) will then have
especially high designability.

We now examine how geometric constraints cause the
emergence of s’s with especially high designabilities by
first attempting to replace the constraints with a set of
explicit algebraic “rules.” Consider a structure in S to be
a chain of 0’s and 1’s linked by N 2 1 links of three
types, 0-0, 1-0 or 0-1, 1-1, with n00, n10, and n11 being
the numbers of such links, respectively. The structure
is partitioned by the 1-0 links into n10 1 1 “islands” of
contiguous 1’s or 0’s. (Peptides in P may be similarly
described, but the only constraint on any p is that the
total number of 0’s and 1’s be N .) For L being a square
lattice with side L, two of the most important constraining
rules are (i) a single 0 may occur only at an end of a
path, and (ii) an isolated single 1 may only either occur
at or be one 0-island away from an end of a path. Space
does not allow us to give more than one other relatively
simple example (with L . 4): For a path having the
pattern s � �1 . . . 1� (both the ends of the path are 1-sites),
2n00 1 n10 � 8L 2 8 and 2 # n10 # 4L 2 12. It is, in
fact, extremely difficult if not impossible to exhaust the
complete set of such rules needed to reduce P to S [17].
For our purpose it suffices to identify a large enough set
of rules which reduces P to a S 0 that is sufficiently close
to S for us to understand the origin and characteristics of
structures of high designability.

In Fig. 1(a) the number of peptides in P (open circle)
and structures in S 0 (solid circle) and S (open triangle) on
a 6 3 6 lattice are plotted against n10. The total number
of elements under the curve for P gives the total number
of sites in the hypercube. S 0 is slightly greater than S but
is much smaller than P . (The boundary of S 0 owes its
roughness to the incompleteness of the set of rules used to
construct it.) It is seen that, whereas for P the maximum
possible value for n10 is 4L 2 4 � 32, for S and S 0 the
corresponding maximum is much less: nmax � 14. As n10
approaches nmax from below, the number of elements in

FIG. 1. (a) Number of peptides vs n10 for P (open circle), P4
(solid triangle), and P5 (square), and number of structures vs n10
for S 0 (solid circle) and S (open triangle), on the 6 3 6 lattice.
(b) Smallest Hamming distance vs differences of n10 of all the
30 408 paths in P on the 6 3 6 lattice. Average designabilities
of the paths vs n10 for the (c) 4 3 7 and (d) 6 3 6 lattices, re-
spectively. Number of neighboring structures within a Hamming
distance of (e) RH � 5 and (f ) RH � 25 of a structure of given
designability.
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S 0 decreases rapidly, whereas those in P increase toward
a maximum. It happens that in the hypercube the small-
est Hamming distance between two structures is approxi-
mately proportional to the difference in their respective n10
numbers. This is evident in Fig. 1(b), where the smallest
Hamming distance is plotted against the difference in n10
for all the pairs among the 30 408 binary structures on a
6 3 6 lattice, and is consistent with results given in [18]
in which x�p� (the degree of clustering of hydrophobic
residues) is analogous to n10.

Since allowed structures with n10’s having values close
to nmax live in a region of the hypercube that is not only es-
pecially sparse in s’s but also most dense in p’s, it follows
that they would on average have a large Voronoi polytope,
and hence are most likely to have the highest designabili-
ties. This is substantially borne out by the results shown
in Figs. 1(c) and 1(d) computed for the allowed structures
on the 4 3 7 and 6 3 6 lattices, respectively, where aver-
age designability is plotted against n10. The average de-
signability does not exactly peak at n10 � nmax but rather
at n10’s just less than nmax. Why this should be so is not
yet clearly understood. Structures with maximum n10 are
the most constrained and are very few in number so that
otherwise secondary details might have had a larger effect
on their designabilities. Preference for large n10’s has also
been observed on other 2D and 3D lattices. The relation
between high designability and sparse population is fur-
ther illustrated in Figs. 1(e) and 1(f), where the number of
structures within a Hamming distance RH of a given struc-
ture is plotted against the designability of that structure.
In 1(e), where RH � 5, it is seen that structures with high
designability have far fewer near neighbors than structures
with low designability. In 1(f), where RH � 25, it is seen
that all structures have approximately the same large num-
bers of near and far neighbors.

Now something interesting emerges. A structure with
its n10 (almost) maximized but not allowed to have single
1’s or 0’s except at its ends [rules (i) and (ii)] will have a
preponderance of the 4-mer (1100) in the interior, so that
large stretches of it will have the form �. . . 11001100 . . .�
which suggests the linear structure of a helices on a lat-
tice. A corollary is that structures with core to surface
ratios close to unity are favored by designability. This im-
plies a diameter of approximately 10 residues for an ideal
protein, which is consistent with the typical size of 300
to 1000 amino acids in natural proteins. Note that the se-
lection of structures with maximized n10 is a consequence
of the geometric property of the Hamiltonian (1) in hy-
perspace and does not depend on the specifics of a lattice.
That larger n10’s are favored is a notion qualitatively con-
sistent with the conclusion drawn from recent studies on
folding kinetics that optimal structures are also minimally
frustrated [15].

To see if what we have observed so far has anything to
do with real proteins we compare five sequences, P125,
each being a concatenation of a set of real protein or
388
(6 3 6) lattice binary peptides: P1, (a) the representative
nonredundant 2886 proteins (sequence similarity smaller
than 90%) [19] culled from the 9257 entries in PDB
[10], or (b) the even less redundant set of 1394 entries
of protein domains from DDD [7], converted to binary
sequences based on hydrophobicity [20]; P2, the sections
in P1 that fold into a helices; P3, the sections in P1 that
fold into b sheets; P4, the 27 006 peptides in P mapped
to the 15 structures of the highest designabilities; P5, the
24 134 peptides in P mapped to the 1545 structures of
the lowest designabilities. Interestingly, the H�P ratios of
the five sequences are all very close to 1; the percentage
of hydrophobic residues contained in each is, respectively,
50.00%, 49.75%, 56.18%, 50.43%, and 49.05% for P1
(from PDB; numbers from DDD are similar) through P5.
Figure 1(a) shows that neither distribution of peptides in
P4 (solid triangle) and P5 (open square) vs n10 is random,
which corroborates the results of [21]. In particular, in
P5 (P4) peptides with larger (smaller) n10’s are slightly
favored over those with smaller (larger) n10’s.

Let f �l�
i

�m� be the frequency, normalized to that of a
sequence with an H�P ratio of unity (if the word has
nH H’s and the actual frequency of the word is f, then
the normalized frequency is �nH�nP�2nH f), of the mth
binary word of length l occurring in sequence Pi and

let F
�l�
i �m� � � f

�l�
i �m� 2 f̄

�l�
i ��Z be the normalized fre-

quency distribution function, where f̄
�l�
i � 22l

P
m f

�l�
i �m�

is the mean frequency and Z � �
P

m� f
�l�
i �m� 2 f̄

�l�
i �2�1�2

is the norm. The relations
P

m F
�l�
i �m� � 0 and

P
m�F�l�

i �m��2 � 1 hold. The pairwise overlaps O
�l�
ij �

P2l

m�1 F
�l�
i �m�F�l�

j �m�; i � 1, 2, 3; j � 4, 5 that measure
correlations between Pi and Pj for l � 4 14 are given
in Figs. 2(a) and 2(b), where the real protein sequences
used are from PDB and DDD, respectively. The two
sets of overlaps are qualitatively similar. It is seen that

FIG. 2. Overlap of frequency distribution functions of lattice
peptides and PDB proteins (a) and DDD protein domains (b) as
a function of word length l: O

�l�
14 (open circle), O

�l�
15 (solid circle),

O
�l�
24 (open triangle), O

�l�
25 (solid triangle), O

�l�
34 (open square), O

�l�
35

(solid square), and O
�l�
45 (open diamond).
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P4 (P5) is positively (negatively) correlated with P1 and
P2. For all values of l the strongest correlation occurs
between the model sequence of high designability (P4)
and the real protein sequence rich in a helices (P2). The
sequence of high designability is poorly correlated with
the sequence rich in b sheets (P3) and, as expected, the
strongest anticorrelation occurs between the two model
sequences of high (P4) and low (P5) designabilities.

Even though the favoring of surface-core repeats by
peptides folding into high-designability structures is most
likely not lattice specific (provided the H�P ratio is close
to one), the particular choice of the (1100) repeat has the
characteristic of a square lattice. For instance, on a hexago-
nal lattice the predominant repeat would more likely be
(10) rather than (1100). There is some justification for se-
lecting square lattices over hexagonal because in real pro-
teins the backbone does not favor small-angle bends. On
the other hand, real proteins do not live on lattices and
the equivalent of (10) repeats does occur in real proteins
where b sheets are exposed to solvent. Thus the low cor-
relation between P3 and P4 is to some extent an artifact
of the square lattice, and it may be better to interpret the
(1100) repeats on a square lattice as representing a type
and some b type repeats (but not the latter’s foldings) in
real proteins.

Our study suggests that the rough formation of a he-
lices and some b sheets and the collapse of proteins into
globular shapes are primarily determined by hydropho-
bicity. Since only the mean-field part of the inter-residue
interaction is included in the model, this implies that
details of the residual inter-residue interaction that deter-
mine the final shape of the native state are not important
at this stage. It has been pointed out that structures of high
designability in a lattice model with two-letter amino acid
alphabet may not be especially designable for higher-letter
alphabets [16]. Although the situation may be different
on a lattice larger than the 5 3 5 lattice used in [16], it
does remain to be verified whether our findings persist in
finer-grained and more realistic models. If it does, then
we can better understand why the formation of a helices
and the collapse would happen on a similar time scale,
of the order 1027 sec, why the formation of b sheets
would take somewhat longer (about 1026 sec) [9,13], and
why these time scales would be so much shorter than the
time needed to complete the rest of the folding (1021

to 10 sec). This scenario is in any case consistent with
the finding in a recent statistical analysis of experimental
data: local contacts play the key role in fast processes
during folding [22].
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