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Self-Organization, Localization of Shear Bands, and Aging in Loose Granular Materials
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We introduce a mesoscopic model for the formation and evolution of shear bands in loose granular
media. Numerical simulations reveal that the system undergoes a nontrivial self-organization process
which is governed by the motion of the shear band and the consequent restructuring of the material
along it. High density regions are built up, progressively confining the shear bands in localized regions.
This results in an inhomogeneous aging of the material with a very slow increase in the mean density,
displaying an unusual glassylike system-size dependence.

PACS numbers: 45.70.Mg, 05.65.+b, 81.40.Cd
A large class of materials are handled in the form of
dispersed solid grains at some stage of their processing.
Thus the description of the rheological properties of sus-
pensions, pastes, and dry granular media is a key question
which controls the ability of mixing, storing, transporting,
etc. these disperse media [1–3]. Granular systems con-
stitute an intermediate state of matter between fluids and
solids [4,5]: they flow like fluids but they also build piles
indicating that a nonvanishing static shear stress is present
which is characteristic of solids. From this point of view it
is also of major interest to understand the shearing process
in these systems. A number of experiments have been car-
ried out on the shear process in granular materials [6,7].
Most of these are triaxial tests [7,8] to determine macro-
scopic properties such as the shear stress or the volumetric
strain, as a function of the shear strain.

The intimate interplay between the geometrical arrange-
ments and the frictional properties of the grains determines
the precise form of the rheological behavior to be used at a
continuum level. The underlying question is the identifica-
tion of relevant internal variables. The most obvious one is
the density of the sample, which can be made to vary over
a wide range by the method of preparation. Compared to
other parameters describing the texture (e.g., fabric tensors
accounting for the distribution of contact orientations) the
density has the most drastic impact on the stress needed
to shear the material as well as on the mode of shearing,
from an apparent homogeneous strain for loose packings
to a localized steady shear band for dense assemblies [9].
The coupling of the density to the shear properties can be
understood through the concept of dilatancy [6].

A related question is whether statistical fluctuations
have an impact on macroscopic properties. Lately, there
has been an upsurge of interest in trying to characterize
the large stress fluctuations [10–13] in silos, Couette
flow, or slider block geometries or to understand the
statistics of interparticle contact forces [14]. Recently,
spectacular experiments in two-dimensional Couette shear
cells were carried out [13] where the movement and stress
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of individual particles were monitored in order to describe
the inner structure and the force network in the sheared
granular material. It was demonstrated that stationary
motion is accompanied by large stress fluctuations due to
the formation and breakdown of arches. Large fluctuations
were also found in three-dimensional steady state shear
cells [15].

This issue has also been raised by the results of re-
cent numerical simulations of rigid grain assemblies [16],
where even at low densities the shearing, which appears
as homogeneous over long times, in fact consists of a suc-
cession of sudden changes of quasi-instantaneous and lo-
calized strain fields. This observation suggests that the
transition from the particle based description to the con-
tinuum one requires the detailed understanding of the sta-
tistical features associated with these sudden changes.

In this Letter we present a simple model for the shear-
ing of a granular medium in loose samples. We describe
the strain field at every instant as a shear band, chosen
through a global optimization procedure, which is equiva-
lent, as we shall see later, to searching for the ground state
of a directed polymer in a random potential [17,18]. How-
ever, this potential is not a priori frozen in but has a self-
organized development due to our procedure of choosing
and changing the shear band. Though very simple and with
only the minimum of ingredients, the model shows that the
density of the medium increases anomalously slowly. Fur-
ther we are also able to predict on the basis of this model
that large scale inhomogeneities build up in a system sub-
ject to a steady shear. This could be an interesting feature
to compare with experiments.

Let us consider a shear process, assumed to be invariant
along the shear direction (z in Fig. 1). This geometry is ap-
propriate, for instance, in an annular shear cell of large ra-
dius [15]. We consider moreover a continuum description,
valid on scales much larger than that of individual grains.
We now introduce a fundamental assumption of our model:
We assume that the instantaneous strain field is always
localized on a single shear band [4,19]. Experimentally,
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it is known that shear bands have a typical width of about
ten grain diameters. Thus at a continuum level the ve-
locity field is indeed discontinuous across the shear band.
From the geometry of our setup, the shear band must be a
continuous surface due to topological constraints (Fig. 1).
Further, we assume that, because of the translational invari-
ance along the z axis, the system can be reduced to a two-
dimensional one in the x-y (cross-section) plane, through
an averaging over the z direction.

The basic hypothesis of the localization of the shear on
the shear band at all times is not as restrictive as it may ap-
pear. We refer here only to instantaneous shear rates, and,
provided the shear band changes rapidly enough, coarse
graining the strain field in time will produce a uniform
shear rate. Experimentally, it is very difficult to have direct
access to the instantaneous shear rate though large fluctu-
ations found in the shear stress may indicate that the shear
is never quite uniform, even at early times. As mentioned
earlier, this seems indicated also by numerics [16].

Initially we consider a loose-packed sample. At a suit-
ably coarse-grained scale the medium can be described as
a continuum, where the density is a random function dis-
playing fluctuations around a mean value. Under a con-
stant normal load, a threshold shear force (or torque for an
annular shear cell) has to be applied to impose a nonzero
strain. Locally, after integration along the z axis, the den-
sity controls the threshold shear force. Although this is
inessential, for simplicity we assume that the ratio of shear
to normal stress, i.e., the friction coefficient, increases lin-
early with density. As mentioned earlier, the texture of the
medium also contributes to the friction coefficient. How-
ever, since we consider only shear in a fixed orientation,
a single scalar parameter combining density and texture
should suffice. This parameter is called “density” for short
and is denoted by � �x, y�. Thus at any time the state of
the medium is characterized by this field.

We determine the shear band [path in the (x, y) plane]
by the following three conditions: (a) it is continuous, (b)
it spans the sample in the x direction without overhangs,
and (c) the sum of the density along it is minimal among
all possible paths satisfying (a) and (b). One can recognize

FIG. 1. Schematic picture of the shear process. The shear band
is parallel to the shear direction z due to periodic boundary
conditions in this direction.
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that this is the well known problem of finding the ground
state of a directed polymer in a random potential [17].

Relative motion of the particles takes place within the
shear band while the rest of the sample remains still. Small
movements can totally rearrange the local structure [15,20]
and thus may induce large changes in the local density. We
simplify this complex behavior by renewing the density �
only along the shear band, by independent random values
taken from a fixed distribution. After this, a new shear
band is again located as described above. Thus the shear
process consists of a succession of localized slips occurring
at very small time scales. We note that in characterizing
this process, in the spirit of a continuum modeling, we
ignore potential stress inhomogeneities in the medium. It
is a simplifying assumption of the model to relate the shear
band localization only to the density, and not to the full
solution of the local stress distribution.

In order to be able to simulate the above model we dis-
cretized it on a square lattice either with principle axis
parallel to x and y and considering first and second nearest
neighbors, or tilted by 45± considering only nearest neigh-
bors. Periodic boundary conditions are imposed in the y di-
rection. Simulations with site and bond versions were also
carried out leading essentially to the same results. We con-
sider here square samples with system size N 3 N with N
varying from 32 to 512. Initially a density �i (a random
number uniformly distributed between 0 and 1) is assigned
to every bond i. We define the instantaneous shear band
as the spanning directed path along which

P
�i is minimal

(applying the usual transfer matrix method [17]). Once the
shear band is found the bonds belonging to it are assigned
new values taken from the same uniform distribution as
used initially. We repeat this process and monitor different
properties of the system [21].

We define the average density �� � as the mean value of
the density of the sites not belonging to the shear band.
This definition, as well as our procedure of choosing the
least and changing it, guarantees that the average density
is a monotonically increasing function of time.

The monotonic behavior and the bounded nature of the
average density (� # 1) ensure that it has an asymptotic
value. In finite samples this is equal to 1. In Fig. 2 we
have plotted the deviation of the average density from this
asymptotic value. At early times (t�N & 2) the rescaled
curves go together independently of the system size; later
nontrivial system size effects can be observed. The relax-
ation to the asymptotic value gets slower as the system size
increases.

Since the system evolves entirely through the process of
choosing and changing the shear band, we have monitored
the following two important quantities related to the shear
band: the Hamming distance d [which is the number of
different sites between successive shear bands (Fig. 3a)]
and the average density of the sites along the shear band
��SB� before change (Fig. 3b). It is apparent from the fig-
ure that there is a characteristic time of tc1 � N , below
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FIG. 2. The difference of the average density ��� from its
asymptotic value is plotted as a function of time t rescaled by
the system size N . The system sizes are 32, 64, 128, 256, and
512 from bottom to top, respectively.

which the distance is essentially constant and equal to the
system size and the density of the shear band is roughly
constant. This can be understood qualitatively from the
following considerations. Since the very first shear band
is equivalent to the ground state conformation of a directed
polymer in a random potential, we know from this analogy
that the mean density along this shear band is much less
than 0.5 [17]. Once the path is refreshed, its mean density
increases to 0.5. The next shear band tends to be repelled
by the previous one since there still exist many spanning
paths with a lower density. Thus at early times two succes-
sive shear bands differ completely (Fig. 3a) and the density

FIG. 3. (a) Log-log plot of the time dependence of the distance
d for system sizes 32 to 512 scaled together. Both the distance d
and the time t scale with the system size N . (b) Log-log plot of
the deviation of the density of the shear band before the update
from its asymptotic value as a function of time for system sizes
32 to 512 scaled together.
of the shear band remains more or less the same (Fig. 3b).
This initial phase should last until on average all sites have
been refreshed a few times, a number of time steps of the
order of N .

The absence of overlap between successive shear bands
in this early time regime reflects the fact that no well de-
fined shear band can be observed in loose granular media.
Experimentally this is connected to the difficulty in quan-
tifying fluctuations, when the mean shear strain is of small
magnitude. So what is observed is seemingly a homoge-
neous shear.

There is a transition regime up to tc2 � 20N , where
we still have a good quality data collapse. In this regime
both curves d and r � 0.5 2 �SB start to fall off. The
decreasing distance indicates an increasing persistence of
the shear band. As the average density of the system in-
creases (Fig. 2) the density of the minimal path also grows
and thus the repulsive interaction between two consecutive
shear bands progressively fades away. Finally, by the end
of the transition regime, the interaction becomes attractive
and a much slower relaxation process takes place.

The above measurements point to a localization of the
shear band, induced by the imposed dynamics. In order to
understand better how this comes about we present density
snapshots of the system at four different instances (Fig. 4)
varying from t�N � 4 to 4000. We observe that initially
(Fig. 4a) the density appears homogeneously distributed.
Then progressively high density regions become apparent.
The mechanism for the formation of these regions is the
following: As the average density increases, the inter-
action between successive shear bands becomes attractive
and the path gets restricted in space. Small fluctuations
of the shear band then lead to a density increase in this
region. The presence of these surrounding areas of high
densities increases the attraction of successive shear bands,
thus leading to a positive feedback process resulting in re-
gions of finite width and very high density where the shear
band is trapped in the middle, in a “canyonlike” structure
(black lines surrounded by white in Figs. 4c and 4d).

The escape from the above described trap is possible
only via a jump to another local minimum. The probabil-
ity of such a jump decreases faster than exponentially with
increasing density. Thus as time grows the average jump
size decreases even though large regions with relatively
small densities remain. The progressive self-quenching of
the shear band in the system is responsible for the anoma-
lous slow increase in the average density. This inhomoge-
neous aging and extremely slow dynamics is reminiscent
of a glassy behavior.

In order to get some more insight into the slow dynamics
of the system we have studied the same model on a hier-
archical lattice. The simple geometry allows for a detailed
analytic treatment of the model. This study will be re-
ported elsewhere [22]. Here we summarize only the main
features of this analysis. The slow density increase and
strong system size dependence seen on the square lattice
3853
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FIG. 4. Snapshots of densities at different times on a system
of size 256 by 256: (a) t � 103 � 4N , (b) t � 104 � 40N ,
(c) t � 105 � 400N , (d) t � 106 � 4000N . The grey scale is
indicated at the bottom of the figure.

are also seen in the hierarchical one. Here we can show
that 1 2 �� � decreases as a sum of power laws with a
vanishing exponent depending on the lattice size, i.e., the
number of generations of the hierarchical lattice. Further,
the early time regime is a single function of t�N as for the
square lattice, while the late time regime scales instead as
t�Na , where a � 1� log�2�.

In spite of its simplicity, the model we have introduced
displays some interesting consequences of collective or-
ganization of density fluctuations in a granular assembly.
Although only time-independent rules are introduced,
the simulations reveal a slow densification which occurs
together with a nontrivial patterning of the density in the
sample. Simultaneously, the shear strain is localized on
shear bands which acquire progressively a longer and
longer persistence. The occurrence of high density regions
confining the shear band is a feature which should be
observable using x-ray tomography as recently performed
in triaxial tests by Desrues et al. [9].

This work was partially supported by OTKA T024004
and T029985.

[1] D. Bideau and A. Hansen, Disorder and Granular Media
(North-Holland, Amsterdam, 1993).
3854
[2] Powders and Grains ’97, edited by R. P. Behringer and J. T.
Jenkins (Balkema, Rotterdam, 1997).

[3] Physics of Dry Granular Media, edited by H. J. Herrmann,
J. P. Hovi, and S. Luding, NATO ASI Ser. E, Vol. 350
(Kluwer Academic Publishers, Dordrecht, 1998).

[4] D. M. Wood, Soil Behaviour and Critical State Soil Me-
chanics (Cambridge University Press, New York, 1990).

[5] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod.
Phys. 68, 1259 (1996).

[6] O. Reynolds, Philos. Mag. 20, 469 (1885).
[7] D. M. Wood and M. Budhu, in Proceedings of the Inter-

national Symposium on Soils under Cyclic and Transient
Loading (Balkema Press, Swansea, 1980).

[8] A. Ahadi and S. Krenk, Non-Associated Plasticity for Soils
(Nordic Association for Computational Mechanics, Stock-
holm, Sweden, 1998).

[9] J. Desrues, R. Chambon, M. Mokni, and F. Mazerolle,
Geotechnique 46, 529 (1996).

[10] M-L. Tan and I. Goldhirsch, Phys. Fluids 9, 856 (1997);
M. Sasvári, J. Kertész, and D. E. Wolf, in Traffic and
Granular Flow ’97, edited by M. Schreckenberg and D. E.
Wolf (Springer, Singapore, New York, 1998), p. 141.

[11] P. Claudin and J.-P. Bouchaud, Phys. Rev. Lett. 78, 231
(1997); M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, and
P. Claudin, Phys. Rev. Lett. 81, 1841 (1998).

[12] S. Nasuno, A. Kudrolli, A. Bak, and J. P. Gollub, Phys.
Rev. E 58, 2161 (1998); F. Lacombe, S. Zapperi, and H. J.
Herrmann, cond-mat/9908359.

[13] C. T. Veje, D. W. Howell, and R. P. Behringer, Phys. Rev.
E 59, 739 (1999).

[14] C.-H. Liu et al., Science 269, 513 (1995); F. Radjai,
M. Jean, J.-J. Moreau, and S. Roux, Phys. Rev. Lett.
77, 274 (1996); F. Radjai, D. E. Wolf, M. Jean, and J. J.
Moreau, Phys. Rev. Lett. 80, 61 (1998).

[15] B. Miller, C. O’Hern, and R. P. Behringer, Phys. Rev. Lett.
77, 3110 (1996); R. Khosropour, J. Zirinsky, H. K. Pak,
and R. P. Behringer, Phys. Rev. E 56, 4467 (1997).

[16] J.-J. Moreau (unpublished).
[17] M. Kardar, Phys. Rev. Lett. 55, 2923 (1985); M. Kardar,

G. Parisi, and Y. C. Zhang, Phys. Rev. Lett. 56, 889 (1986);
Y. C. Zhang and T. Halpin-Healy, Phys. Rep. 254, 215
(1995).

[18] The relevance of the directed polymer model to fracture
phenomena was suggested some time ago [K. J. Måløy
et al., Phys. Rev. Lett. 68, 213 (1992); J. Kertész, V. K.
Horváth, and F. Weber, Fractals 1, 67 (1993)]. Here we
demonstrate that this model also gives insight into the
mechanism of failure formation in a very different context.

[19] J. Török and S. Roux, Granular Matter (to be published).
[20] S. Ouaguenouni and J.-N. Roux, Europhys. Lett. 32, 449

(1995).
[21] This is in the spirit of the Bak-Sneppen model [P. Bak and

K. Sneppen, Phys. Rev. Lett. 71, 4083 (1993)]. However,
as we show, our model is asymptotically not critical.

[22] J. Török, S. Krishnamurthy, J. Kertész, and S. Roux (to be
published).


