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Singular Behavior of Light-Induced Space Charge in Photorefractive Media under an ac Field
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We show that a photoconductive crystal, placed in a rapidly alternating ac field and exposed to nonuni-
form light, exhibits singularities of the induced space charge and discontinuities of the corresponding
space-charge field. The singularities appear at the local intensity maxima when the curvature of the in-
tensity profile exceeds a certain (often very low) threshold value. We analyze the characteristic features
of the singular ac response and consider its possible optical manifestations.

PACS numbers: 42.65.Hw, 42.70.Nq
Charge separation owing to the generation of free
carriers is the main ingredient of the photorefractive non-
linearity inherent in many semiconductors and dielectrics
[1,2]. Most photorefractive phenomena (spatial ampli-
fication, phase conjugation, nonlinear scattering, etc.)
involve the buildup of space-charge field gratings in
response to interfering light beams and diffraction by
these gratings via the linear electro-optic effect. Diffusion
of photoexcited carriers was initially the only mechanism
capable of producing a field profile proportional to the
light intensity gradient (gradient response) which is
necessary for many applications [1–3]. Unfortunately,
the gradient response caused by diffusion is often insuffi-
ciently high for practical purposes.

In 1985, an alternating current (ac) technique was
proposed in order to enhance the photorefractive response
of high-speed materials like the sillenites (Bi12SiO20,
Bi12TiO20, Bi12GeO20), semiconductors GaAs, CdTe, etc.
[3,4]. This method requires a strong rapidly alternating
(often as a square wave) electric field and serves currently
as one of the main tools for shaping the photorefractive
nonlinearity. Within the linear approximation in the light
modulation, it also gives a gradient response which is,
however, much greater than that caused by diffusion.

Although it was found [5–7] that the linear approxi-
mation in the ac case is restricted to values of the light
modulation considerably smaller than 1, the concept of
gradient response has been overwhelmingly used for
the arrangement and interpretation of a large number of
ac-photorefractive experiments; see, e.g., [2,8–10] and
references therein. These experiments deal not only with
the recording of spatial gratings but also with nonlinear
beam propagation [9–11], which has become topical
during recent years in connection with photorefractive
solitons [2,12] and possible applications [13,14]. In the
case of beam propagation, the light contrast, defined as
the ratio between the maximum signal and background
intensities, is typically much greater than 1. The effects
of material nonlinearity lying outside the linear approxi-
mation can become decisive in this region. Previous
theoretical attempts [5,6,15] to enter the nonlinear do-
main have shown some modification of the ac response
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but they have not found its new general qualitative
features.

The purpose of this Letter is to reveal new characteristic
features of the ac response beyond the small contrast ap-
proximation. We show analytically and numerically that
above a fairly low threshold for the intensity profile curva-
ture, the main feature of this response is the occurrence of
very strong and narrow peaks of the light-induced charge
density. These charge singularities, coupled with disconti-
nuities of the space-charge field, arise at the local intensity
maxima. Their width is defined by an internal character-
istic length of the material which is much smaller than the
spatial scale of the intensity variations. We also consider
possible optical manifestations of the singular ac response.

Our starting point is the standard one-trap model for
electron transport that is justified for the sillenites and
useful for many semiconductors. Within this model, the
space-charge field E, the concentration of donors N1, and
the free electron density n obey in the 1D case the equa-
tions [1,2]

Ez �
q

´´0
�N1 2 NA� , (1a)

N1
t � siI�ND 2 N1� 2 srnN1 (1b)
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∑
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kBT
q
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∏
z
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Here the subscripts t and z denote differentiations with
respect to time and the spatial coordinate, I is the light
intensity, Eex the applied field, q the elementary charge,
´´0 the dielectric constant, m the electron mobility, T the
absolute temperature, kB the Boltzmann constant, si and
sr are the ionization and recombination constants, and ND

and NA the concentrations of donors and acceptors.
We have used the standard low-intensity approxima-

tion exploiting the smallness of the electron lifetime, t �
1�srNA, in comparison with the dielectric relaxation time
td ~ I21 . We suppose also that NA ø ND , which is
the case for the sillenites (where NA�ND � 1023) and for
many other crystals [3]. In what follows, we also take
into account the dark excitation of electrons by assuming
a small effective background illumination.
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Let us assume further that Eex � E0p�t�, where E0 is
the amplitude of the ac field, and p�t� � 61 is a peri-
odic function with a zero average value, �p�t�� � 0, and
a period T much smaller than td . Correspondingly, we set
E � E0 �e 1 ẽ�, where e and ẽ are the slow and fast di-
mensionless components, such that �ẽ� � 0, �e� � e, and
jẽj ø jej.

Our aim now is to obtain a closed equation for e by
averaging over the fast oscillations. The whole derivation
procedure is as follows: First, we reduce algebraically
Eqs. (1) to a single nonlinear differential equation for E.
Then, taking the average, we obtain in the leading approxi-
mation in T�td a relation between e and �pẽzt�. Neglect-
ing provisionally the diffusion contribution to the electric
current density [the last term in Eq. (1c)], we represent this
relation as

�pẽzt� �
qsiNDI
´´0E0

e . (2)

Multiplying the nonlinear equation for E by p�t� and re-
peating the averaging, we arrive at another relation be-
tween e and �pẽzt�. Finally, using Eq. (2), we obtain in
steady state, "

I �1 2 e2�
1 1 nej

#
j

1 eI � 0 , (3)

where j � z�l0 is the normalized coordinate, l0 � mtE0
the drift length, and n � ´´0�qmtNA a characteristic
dimensionless parameter.

Equation (3) is worthy of attention. It is a second-order
differential equation with two different nonlinear terms.
The term e2 originates from the drift nonlinearity [product
nE in Eq. (1c)], whereas the term nej in the denominator
(equal to dN1�NA, where dN1 � N1 2 NA is the light-
induced charge density) comes from the product nN1 in
Eq. (1b) and describes trap saturation. This term can be
larger than 1 but it is assumed to be much smaller than
ND�NA. In other words, we consider possible saturation
of acceptors but not of donors. The field e�z� is obviously
invariant to scaling of the intensity profile I�z�.

Another important observation is that n � 1�4Q2
max,

where Qmax is the maximum value of the quality factor
for the space-charge waves [7]. The resonant linear and
nonlinear phenomena related to these waves and the lit-
erature data on NA and mt give evidence that Qmax ¿ 1
and n & 1022 in the sillenites and many semiconductors
[2,3,7]. This means that the term nej in Eq. (3) is impor-
tant only when e�z� changes considerably within the satu-
ration length ls � nl0 � ´´0 E0�qNA ø l0. In the whole
region where nej ø 1 [i.e., e�z� is a smooth function] the
field profile obeys the nonlinear first-order equation

2ej � 1 1 I21Ij�e21 2 e� . (4)

Equation (4) carries no information about the traps and
implies only a linear recombination for photocarriers and
their drift in the electric field with mobility m.
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As follows from Eqs. (3) and (4), an even intensity dis-
tribution I�z� corresponds to an odd distribution of e�z�.
This symmetry property is compatible with the concept of
a gradient response.

The small contrast approximation means for Eqs. (3)
and (4) that e � 2Ij�I ø 1. It is in agreement with
the formulas for the ac response obtained within the linear
approximation [3,4].

Let us return to the general nonlinear case described by
Eq. (3) and consider two important particular cases, (a) and
(b). They correspond to Gaussian and periodic intensity
profiles that are specified by the relations

I ~ 1 1 f0 exp�24z2�d2� , (5a)

I ~ 1 1 m cos�2pz�L� . (5b)

The values of f0 relevant to experiment are much greater
than 1 (a weak background excitation) whereas the modu-
lation of the interference light pattern, m, is less than 1. In
case (a) we have e�6`� � 0 as the boundary conditions
for Eq. (3); they can be replaced by e�0� � e�`� � 0 in
view of the symmetry properties. In case (b) we can use
the boundary conditions e�0� � e�L�2� � 0.

For our numerical calculations we accept the following
parameters representative for experiments with Bi12SiO20
crystals: NA � 1016 cm23, ND � 1019 cm23, ´ � 56,
mt � 4 3 1027 cm2�V, and E0 � 25 kV�cm. They
correspond to l0 � 60 mm, ls � 0.4 mm, and n � 7 3

1023. Comparable values of n are typical of other
sillenites.

Figure 1 shows the distribution e�z� induced by a Gauss-
ian beam of width d � 0.6l0 for several values of f0.
For f0 * 0.5 the field profile is characterized by a very
pronounced discontinuity at z � 0. Outside the narrow
discontinuity region, the function e�z� obeys the first-
order Eq. (4). Its broad maximum occurs far from the
discontinuity; for f0 * 0.5, an increase of f0 shifts the
position of the maximum to the right and the corresponding
maximum field emax�f0� saturates, approaching 1. Only
for jzj�d * 1.5, where jej ø 1, the shown field profiles

FIG. 1. Normalized space-charge field e�z� for d�l0 � 0.6 and
f0 � 20.1, 0.1, 0.5, 2, and 10. The arrows indicate the corre-
sponding values of e�0� for Eq. (4).
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correspond to the low-contrast approximation. The ar-
rows in Fig. 1 indicate the values of e�0� for the first-order
Eq. (4). For f0 * 0.5 the ratio e�0��emax � const whereas
for f0 & 0.1, it becomes smaller and the discontinuity less
and less pronounced. Negative values of f0 give no dis-
continuity of e�z�. The steepening of the field profile is a
nonlinear feature that appeared in some previous numeri-
cal calculations [6,15].

The narrow central peak and the broad symmetric pro-
file in Fig. 2 illustrate the relationship between the charge
and intensity distributions for d�l0 � 0.6 and f0 � 10.
The size of the charge singularity is dramatically much
smaller than the beam width. The dotted shifted peak
shows the charge singularity induced by a slightly Gauss-
ian-like asymmetric beam (the dotted broad profile) that
has its maximum at z � 0 and the light intensity weight
center wc �

R
xI�x� dx�

R
I�x� dx at z�d � wc � 20.19.

We see that the singularity is pinned exactly to the inten-
sity maximum only in the symmetric case. In the case of a
slightly asymmetric profile, it moves towards z�d � wc.

The central part of the charge distribution induced by a
Gaussian beam is depicted in Fig. 3 for several values of
f0. One sees that the size of the core is of the order of
ls. The singularity is not only very narrow but it is also
very strong. One sees that the acceptors become saturated
already for f0 � 2. The wide wings of the charge profile,
where jdN1�NAj ø 1, cannot be resolved in the scale of
Fig. 3.

Now we touch on the influence of the beam width on the
above features. Decreasing d�l0 makes the singular behav-
ior more pronounced. On the other hand, increasing d�l0
results in decreasing e�0��emax, i.e., shifts the singular be-
havior towards large beam amplitudes. For d�l0 * 6 our
numerical calculations have shown no singular behavior.

Let us turn now to the grating recording [case (b)]. Fig-
ure 4 exhibits the field distribution e�z� produced by a peri-
odic light pattern of a period L � 0.4l0 for several values
of m. It has the same discontinuity up to very low modu-
lations. For L�l0 * 8 the singularity disappears.

FIG. 2. Correspondence between charge dN1 and intensity
I�z� profiles (a.u.). The dotted curves refer to the asymmetric
case.
The results found become more clear if we look at
proper physical analogies. The essence of Eq. (3) is the
presence of a small coefficient n before the highest-order
(second) derivative. Such a situation is typical, e.g., for the
shock waves described by Burgers equation [16], where a
narrow wave front is controlled by a small viscosity, and
for the domain walls in the phase transition theory [17].

Furthermore, the inevitability of the singular behavior
follows directly from Eq. (4). Let us assume that the sin-
gularity is absent. Then this first-order differential equa-
tion possesses (for an arbitrary smooth intensity profile) a
continuous solution that simultaneously meets two bound-
ary conditions. This is impossible in general.

To make our assertion more specific, we obtain a crite-
rion for the existence of a linear solution, e�j� � e0�0�j,
of Eq. (4) at the origin for the Gaussian light profile given
by Eq. (5a). By equalizing the zero-power terms (in j)
on the left- and right-hand sides of Eq. (4), we arrive at a
quadratic equation for e0�0� that has real solutions only if
f0 , fth

0 , where

fth
0 � �64l2

0d22 2 1�21. (6)

Above the threshold, any solution of Eq. (4) vanishing at
infinity has to be nonzero at z � 0. Note that for d ø 8l0

the threshold amplitude fth
0 becomes very small whereas

for d . 8l0 a linear solution in the vicinity of zero exists
for any f0.

The found criterion can be generalized for an arbi-
trary smooth intensity distribution. If we write I ~ �1 2

z2�2R2� in the vicinity of a maximum, the generalized cri-
terion for the radius of curvature of the intensity profile is
R , Rth � 2

p
2 l0.

Our numerical calculations have shown that decreasing
R from Rth to Rth�2 is accompanied by an increase of
e�0� from zero to a value comparable with emax, which
corresponds to a developed singularity.

The fine structure of the discontinuity is described by the
second-order Eq. (3) if we put I�j� � const in the vicinity
of z � 0. Then we find

e�z� � c tanh�cz�ls�1 2 c2�	 , (7)

FIG. 3. Core of the charge singularity for d�l0 � 0.6 and f0 �
1, 2, 5, and 10.
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FIG. 4. Normalized space-charge field e�z� for the grating
recording; the period is L � 0.4l0 and the modulation is m �
0.1, 0.3, 0.5, 0.7, and 0.9.

where c is an integration constant. Matching the singular
and smooth components, we have c � e�0�. Obviously, c
grows with f0 remaining smaller than 1. Correspondingly,
the width of the singularity decreases with increasing f0
and it becomes somewhat smaller than ls. The described
features are seen in Fig. 3.

Now we consider the role of the diffusion contribution
to the current density, omitted when deriving Eq. (3). Re-
taining this contribution leads to the appearance of ad-
ditional differential high-order terms on the right-hand
side of Eq. (3). However, if the diffusion length, lD �
�mtkBT�q�1�2, is much smaller than �l0ls�1�2, i.e., E0 ¿
�kBTNA�´´0�1�2, these additional terms are negligible not
only outside the singularity but even in its core. Using the
accepted values of NA and ´, we obtain the following nu-
merical condition of validity of Eq. (3), E0 ¿ 3 kV�cm,
that is always fulfilled in ac experiments.

The generation of charge singularities with the aid of
large-size light beams is a new feature of the ac technique
attractive for semiconductor and optical applications.
This feature goes, in fact, beyond the scope of the photo-
refractive effect because it has nothing to do with the
linear electro-optic effect. For photorefractives, the most
interesting question concerns optical manifestations of
the charge singularity. For applications based on weak
optical nonlinearity (like displacement sensing [11,13])
the steepening of the field profile is a positive effect
because it increases the sensitivity of measurements.

The influence of the singularities on nonlinear beam
propagation in thick samples is a more challenging sub-
ject. Strong transverse phase gradients near the singularity
can result in spatial instabilities of the wave front and lead
to irregular light structures. A similar effect has been re-
ported recently as “beam collapse” [10]. We expect also
that the ac nonlinearity strongly modifies (because of high-
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intensity gradients) the speckle structure of laser irradia-
tion. It is not excluded that the found ac response is com-
patible with localized solutions describing the trapping of
light by the singularity and similar to the solitary solutions
for the gradient photorefractive response [18].

In conclusion, we have shown that beyond the small-
contrast limit the response of a photoconductive crystal,
placed in a rapidly alternating ac field and exposed to
nonuniform light, strongly differs from the expected diffu-
sionlike response. The striking feature of the ac response is
the presence of very narrow and strong charge singularities
inseparable from discontinuities of the space-charge field
at the local intensity maxima. This suggests new optical
effects in photorefractive crystals.
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